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Abstract

This study proposes an approximation of European option prices under arbitrary diffu-

sion processes of the spot price. The key is to approximate the characteristic function

of the log spot price process as the solution to ordinary differential equations. The op-

tion price is then obtained by the inverse Fourier transform. Numerical experiments,

using a model that has the constant elasticity of volatility specification in both the

spot price and volatility processes, confirm reasonable accuracy of the approximation,

except when the volatility process exhibits high variation.

Keywords: Approximation, Conditional moment, European option, Fourier transform,

Stochastic volatility.
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1 Introduction

The Fourier Transform (FT) approach to the pricing of options, originally introduced

by Heston (1993), allows for the extension of a class of models under which an efficient

computation of option prices is possible. This is because the FT approach works when

the characteristic function of a (log) spot price process has a closed form even though

the density function does not. This weaker requirement leads to the development of more

realistic models of the spot price process. Examples include affine jump-diffusion models

[Bakshi et al. (1997), Bates (1996, 2000), Duffie et al. (2000), Pan (2002), and Scott

(1997)]; variance-gamma models [Madan and Seneta (1990), and Madan et al. (1998)];

the normal inverse Gaussian model [Barndorff-Nielsen (1998)]; the finite moment log-stable

model [Carr and Wu (2003a)]; the CGMY model [Carr et al. (2002)]; and discrete-time

GARCH models [Heston and Nandi (2000)].

Nevertheless, it seems that other realistic models are worth pursuing. One notable

example is a model that accommodates both stochastic volatility (SV) and constant elas-

ticity of volatility (CEV), as proposed by Jones (2003), and Melino and Turnbull (1990)

in the option-pricing literature, and by Andersen and Lund (1997), Brenner et al. (1996),

and Gallant and Tauchen (1998) in the time-series literature. This volatility specification

can generate skewness and leptokurtosis in the conditional distribution of the spot price,

which are fundamental for many securities in capturing not only time-series properties of

the spot price but also cross-sectional properties of the option prices observed as implied-

volatility smiles or smirks. Furthermore, in pricing options written on an asset that is

sensitive to interest rates, the stochastic risk-free rate needs to be incorporated, possibly

with the instantaneous correlation between the spot price and the risk-free rate. In the

above cases, however, even the characteristic function of the spot price process is unavail-

able in closed form, which makes it difficult to achieve an efficient computation of option

prices based on these models.

This study proposes an approximation of European option prices under general dif-

fusion processes of the spot price. The key is to approximate the characteristic function

of the log price process using a method originally proposed by Shoji (2002) and recently

applied to bond pricing by Takamizawa and Shoji (2009). The method approximates con-

ditional moments of diffusion processes as the solution to ordinary differential equations.

Since the characteristic function is basically given by the expectation, this method can be

applicable. Once an analytical expression of the characteristic function is available, the

option price is obtained by Fourier inversion.

Using an SV model that has the CEV specification in both the spot price and volatility

processes, the accuracy of the approximation is examined by numerical experiments, where

benchmark option prices are computed by the Monte Carlo (MC) method. The numerical

results are summarized as follows. (i) The third-order approximation generally achieves
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high accuracy, except when the volatility process exhibits high variation. (ii) When the

mean reversion of the volatility process is relatively fast, the second-order approximation

performs reasonably well. Actually, the higher accuracy of the third-order approximation

is achieved at the cost of computational complexity. This study also explores the possibility

of reducing this complexity without much reducing the accuracy.

Section 2 explains the method of approximating conditional moments, whose applica-

tion within the FT approach is presented in Section 3. Section 4 examines the accuracy

of the approximation. Section 5 identifies conditional third moments of the underlying

processes that significantly affect option prices, which is aimed at reducing computational

burden. Section 6 provides concluding remarks.

2 An Approximation Formula of Conditional Moments

A method of approximating conditional moments, originally proposed by Shoji (2002), is

widely applicable to the computation of up to conditional n-th moments, if they exist,

for a d-dimensional diffusion process. An important feature of the method is that all the

moments considered are computed simultaneously as the solution to a system of ordinary

differential equations. Here, a more specific explanation of the method is presented, taking

the application to the pricing of options into consideration. First is the case with (n, d) =

(1, 2), i.e., the conditional first moments of a two-dimensional process, followed by the

cases with up to (n, d) = (3, 3), i.e., the conditional third moments of a three-dimensional

process. As seen below, n can be considered as the order of approximation.

2.1 Conditional first moments of a two-dimensional process

Let Xt = (x1,t x2,t)� be a two-dimensional stochastic process, which evolves according to

the following stochastic differential equation (SDE):

dx1,t = f1(Xt)dt+ ξ1(Xt)
�dWt , (1)

dx2,t = f2(Xt)dt+ ξ2(Xt)
�dWt , (2)

where Wt is the two-dimensional Brownian motion, and the drift and diffusion functions,

fi and ξi (i = 1, 2), satisfy certain technical conditions for the solutions to Eqs.(1) and

(2) to exist for an arbitrary X0. It is also assumed that fi and gij = ξ�iξj (i, j = 1, 2)

are appropriately smooth with respect to Xt. Specifically, according to Shoji (2002), they

belong to Cn+1-class in computing up to conditional n-th moments by the method, which

is needed to prove the convergence of approximate moments to the true ones.

Let Ψs,t be a vector consisting of the first moments of (an increment of) Xt conditioned

on time s ≤ t:

Ψs,t = Es (x1,t − x1,s x2,t − x2,s)
� ,
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where Es stands for the conditional expectation. By integrating Eq.(1) and taking the

conditional expectation,

Es[x1,t − x1,s] = Es

�� t

s
f1(Xu)du

�
. (3)

By applying the Taylor expansion to f1(Xu) around Xs up to the first order and substi-

tuting this into Eq.(3),

Es[x1,t − x1,s] = f1(Xs)(t− s)

+Es

�� t

s

�
f (1,0)
1 (Xs)(x1,u − x1,s) + f (0,1)

1 (Xs)(x2,u − x2,s)
�
du

�
+R1 , (4)

where f (i,j) = ∂i+jf

∂xi
1∂x

j
2

, and R1 is a residual term. Eq.(4) can be expressed in a vector form

as

Es[x1,t − x1,s] = f1(Xs)(t− s) +
�
f (1,0)
1 (Xs) f (0,1)

1 (Xs)
� � t

s
Ψs,udu+R1 . (5)

Similarly,

Es[x2,t − x2,s] = f2(Xs)(t− s) +
�
f (1,0)
2 (Xs) f (0,1)

2 (Xs)
� � t

s
Ψs,udu+R2 . (6)

Expressing Eqs.(5) and (6) together in a vector form leads to

Ψs,t = A(Xs)
� t

s
Ψs,udu+ b(Xs)(t− s) +R , (7)

where

A(Xs) =



 f (1,0)
1 (Xs) f (0,1)

1 (Xs)

f (1,0)
2 (Xs) f (0,1)

2 (Xs)



 , b(Xs) =



 f1(Xs)

f2(Xs)



 ,

and R = (R1 R2)�. Eq.(7) can be developed to

Ψs,t =
� t

s
eA(Xs)(t−u)b(Xs)du+ R̂ , (8)

where R̂ is a residual vector. If, in addition, A is invertible,

Ψs,t = A−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (9)

As seen below, Eqs.(7)–(9) hold for any (n, d) with modification to A(Xs) and b(Xs).

Omitting the residual vector leads to the approximation. According to Shoji (2002), both

R and R̂ have order ofO((t−s)(n+3)/2) when up to conditional n-th moments are computed.

Thus, n can be considered as the order of approximation. In this particular case, it is

O((t − s)2) for n = 1. Indeed, the conditional moments computed by the method are

more accurate than those computed by the conventional Euler method. To illustrate this,

suppose a one-dimensional lognormal process Xt, which evolves according to the following

SDE: dXt = aXtdt+ bXtdWt. We know that Es[Xt−Xs] = Xs{e(a−
1
2 b

2)(t−s)−1}. On the
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other hand, it is approximated by the Euler method as Es[Xt −Xs] = aXs(t− s), and by

the proposed method as Es[Xt − Xs] = Xs{ea(t−s) − 1} by substituting A(Xs) = a and

b(Xs) = aXs into Eq.(9) (without the residual term). Obviously, the latter is closer to the

true value. When b is large, however, the approximation error of the proposed method

may not be negligible. A more important message from this simple example, therefore,

is that even though the focus is on the computation of lower-order moments, it is more

appropriate to include information on higher-order moments.

2.2 Up to conditional second moments of a two-dimensional process

The moment vector, Ψs,t, consists of up to the conditional second moments. It is here a

five-dimensional vector as

Ψs,t = Es

�
x1,t − x1,s x2,t − x2,s (x1,t − x1,s)

2 (x2,t − x2,s)
2 (x1,t − x1,s)(x2,t − x2,s)

��
.

By applying the Taylor expansion to fi(Xu) (i = 1, 2) around Xs up to the second

order,

fi(Xu) = fi(Xs)

+f (1,0)
i (Xs)(x1,u − x1,s) + f (0,1)

i (Xs)(x2,u − x2,s) +
1

2
f (2,0)
i (Xs)(x1,u − x1,s)

2

+
1

2
f (0,2)
i (Xs)(x2,u − x2,s)

2 + f (1,1)
i (Xs)(x1,u − x1,s)(x2,u − x2,s) + ei , (10)

where ei is a residual term. By substituting Eq.(10) into the right-hand side of Es[xi,t −
xi,s] = Es[

� t
s fi(Xu)du],

Es[xi,t − xi,s] = fi(t− s)

+
�
f (1,0)
i f (0,1)

i
1

2
f (2,0)
i

1

2
f (0,2)
i f (1,1)

i

�� t

s
Ψs,udu+Ri , (11)

where Xs is abbreviated for notational convenience.

Next, by applying the Ito formula to (x1,t − x1,s)2 and taking the conditional expecta-

tion,

Es[(x1,t − x1,s)
2] = Es

�� t

s
{2f1(Xu)(x1,u − x1,s) + g11(Xu)}du

�
, (12)

where g11 = ξ�1ξ1. By applying the Taylor expansion to f1(Xu) and g11(Xu) around Xs

up to the first and second orders, respectively, the integrand of Eq.(12) becomes

2f1(Xu)(x1,u − x1,s) + g11(Xu)

= g11(Xs) + {2f1(Xs) + g(1,0)11 (Xs)}(x1,u − x1,s) + g(0,1)11 (Xs)(x2,u − x2,s)

+{2f (1,0)
1 (Xs) +

1

2
g(2,0)11 (Xs)}(x1,u − x1,s)

2 +
1

2
g(0,2)11 (Xs)(x2,u − x2,s)

2

+{2f (0,1)
1 (Xs) + g(1,1)11 (Xs)}(x1,u − x1,s)(x2,u − x2,s) + e11 , (13)
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where g(i,j) is defined analogously with f (i,j) and e11 is a residual term. By substituting

Eq.(13) into Eq.(12),

Es[(x1,t − x1,s)
2] = g11(t− s)

+
�
2f1 + g(1,0)11 g(0,1)11 2f (1,0)

1 +
1

2
g(2,0)11

1

2
g(0,2)11 2f (0,1)

1 + g(1,1)11

�

×
� t

s
Ψs,udu+R11 . (14)

A similar manipulation is applied to Es[(x2,t − x2,s)2] and Es[(x1,t − x1,s)(x2,t − x2,s)].

Expressing the resulting equations together in a vector form leads to Eq.(7), where

A =





f (1,0)
1 f (0,1)

1
1
2f

(2,0)
1

1
2f

(0,2)
1 f (1,1)

1

f (1,0)
2 f (0,1)

2
1
2f

(2,0)
2

1
2f

(0,2)
2 f (1,1)

2

2f1 + g(1,0)11 g(0,1)11 2f (1,0)
1 + 1

2g
(2,0)
11

1
2g

(0,2)
11 2f (0,1)

1 + g(1,1)11

g(1,0)22 2f2 + g(0,1)22
1
2g

(2,0)
22 2f (0,1)

2 + 1
2g

(0,2)
22 2f (1,0)

2 + g(1,1)22

f2 + g(1,0)12 f1 + g(0,1)12 f (1,0)
2 + 1

2g
(2,0)
12 f (0,1)

1 + 1
2g

(0,2)
12 f (1,0)

1 + f (0,1)
2 + g(1,1)12





,

b� = (f1 f2 g11 g22 g12) .

Note that the residual terms, Ri and Rij (i, j = 1, 2), contain (the conditional expecta-

tion of) derivatives of fi higher than the first order and derivatives of gij higher than the

second order. Then, if fi and gij are linear and quadratic, respectively, there is no residual

term. In other words, the conditional moments computed by the method are exact. Even

in this case, it may be beneficial to use this method when the derivation of the closed form

conditional moments is demanding.

2.3 Up to conditional third moments of a three-dimensional process

Since the derivation is basically the same, only the resulting A(Xs) and b(Xs) are presented

with a brief explanation of notations. Let Xt = (x1,t x2,t x3,t)� be a three-dimensional

stochastic process. The SDE for x3,t is specified analogously, where the drift and diffusion

functions are denoted as f3(Xt) and ξ3(Xt), respectively, with gij = ξ�iξj (i, j = 1, 2, 3).

Let ψpqr,s,t = Es[(x1,t − x1,s)p(x2,t − x2,s)q(x3,t − x3,s)r], and a moment vector consisting

of up to the conditional second moments can be expressed as

Ψn=2
s,t = (ψ100,s,t ψ010,s,t ψ001,s,t ψ200,s,t ψ020,s,t ψ002,s,t ψ110,s,t ψ101,s,t ψ011,s,t)

� ,

(15)

where the order of approximation, n = 2, is indicated in the upper suffix here. A moment

vector for n = 3, Ψn=3
s,t , is then obtained by augmenting Ψn=2

s,t with a vector consisting of

the conditional third moments:

Ψn=3
s,t = (Ψn=2 �

s,t ψ300,s,t ψ030,s,t ψ003,s,t

ψ210,s,t ψ201,s,t ψ120,s,t ψ111,s,t ψ102,s,t ψ021,s,t ψ012,s,t)
� , (16)
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Table 1 presents the elements of A(Xs) and b(Xs) for Ψn=3
s,t . The corresponding matrix

and vector for Ψn=2
s,t are the 9× 9 upper-left submatrix of A(Xs) and the 9× 1 subvector

of b(Xs) for Ψn=3
s,t , respectively. As seen later, when a two-factor model is considered in

which the spot price and volatility are stochastic, Table 1 is used for the reference. Which

n to choose depends on the extent to which accuracy one requires. This is examined by

numerical experiments in Section 4. When a three-factor model is considered in which

the risk-free rate is also stochastic or the volatility is driven by two stochastic factors,

the conditional moments of a four-dimensional process are required. The derivation of

A(Xs) and b(Xs) for a four-dimensional process is a straightforward extension of the

lower-dimensional processes.

3 Application of the Approximation Formula

To clarify how the proposed method is utilized within the FT approach to the pricing of

options, the outline of this approach is first provided, followed by the application of the

approximation formula.

3.1 Fourier transform of the option value

Let St be the spot price at time t. The price of a European put option at time 0 with a

maturity date t and a strike price K is given by

P0(K, t) = E0[e
−
� t

0
rudu(K − St)1{St<K}] . (17)

The price of a call option is immediately obtained by the put-call parity. St and rt may

depend on some state variables, however, they are suppressed at present.

Let st and k be logarithm of St and K, respectively: st = lnSt and k = lnK. Define

G0(k; t, a) = E0[e
−
� t

0
rudueast1{st<k}] , (18)

and the put option price is given by

P0(k, t) = ekG0(k; t, 0)−G0(k; t, 1) . (19)

Thus, the pricing of European options is equivalent to the evaluation of G0(k; t, a).

Following Duffie et al. (2000), the Fourier transform of G0(k; t, a) is given by

H0(θ; t, a) =
�

eiθkdG0(k; t, a) = E0[e
−
� t

0
rudue(a+iθ)st ] . (20)

Define

φ0(α; t) = E0[e
−
� t

0
rudueαst ] , (21)

7



and H0(θ; t, a) = φ0(a + iθ; t). The option value is then recovered by the inverse Fourier

transform as

G0(k; t, a) =
1

2
φ0(a; t)−

1

π

� ∞

0

1

θ
Im[e−iθkφ0(a+ iθ; t)]dθ , (22)

where Im(x) = β for x = α + βi. The feasibility of this FT approach depends on the

availability of an analytical expression of φ0(α; t).

3.2 Approximation to φ0(α; t)

Suppose the risk-neutral dynamics of the log spot price, st, is given by the following SDE:

dst = µ(st, Yt)dt+ σ(st, Yt)dWt , (23)

where Wt is the Brownian motion under the risk-neutral measure, and the drift and

diffusion functions possibly depend on a state vector, Yt. By the absence of arbitrage,

µ(st, Yt) = r(Yt) − 1
2σ

2(st, Yt) holds, where the instantaneous risk-free rate, r(Yt), may

also depend on (some elements of) Yt.

Now, define

Zt = e−
� t

0
rudueαst , (24)

and φ0(α; t) is the conditional first moment of Zt, i.e., φ0(α; t) = E0[Zt]. By applying the

Ito formula to Zt,

dZt = µz(st, Yt, Zt)dt+ σz(st, Yt, Zt)dWt , (25)

where

µz(st, Yt, Zt) =
�
−r(Yt) + αµ(st, Yt) +

1

2
α2σ2(st, Yt)

�
Zt , (26)

σz(st, Yt, Zt) = ασ(st, Yt)Zt . (27)

Based on the SDE for Zt together with those for st and Yt, the elements of A and b in

Eq.(7) are determined.

4 Accuracy of the Approximation

4.1 Setup

The MC method is employed to obtain benchmark prices of European put options, where

the number of repetitions is set to one million with antithetic variates. In generating

sample paths, the SDEs under the risk-neutral measure are discretized by the Euler method

with a step size of 1/1, 000. The accuracy is then measured by the relative pricing error,

pap/pmc − 1, where pap and pmc denote the approximate and MC prices, respectively.
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The following SV model is considered, which has the CEV specification in both the

spot price and volatility processes, and thus is labeled SV-CEV:

dSt

St
= rtdt+

�
Vt

�
St

S0

�γ1−1

dW1,t , (28)

dVt = κ2(θ2 − Vt)dt+ σ2V
γ2
t dW2,t , (29)

where Wi,t (i = 1, 2) are the Brownian motions under the risk-neutral measure with

Et[dW1,t dW2,t] = ρ12dt. The SV-CEV model nests both the Heston (1993) and Hull and

White (HW) (1987) models: the former is obtained by γ1 = 1 and γ2 = 0.5, whereas the

latter is by γ1 = γ2 = 1 and θ2 = 0.

Note that the diffusion term of the instantaneous rate of return on St depends on

the power of St/S0, i.e., the normalized price. This specification is convenient in the

following reason. For small t, which corresponds to an option maturity, St/S0 is likely

to be around unity, and so is (St/S0)γ1−1 with γ1 �= 1. Then, Vt can be interpreted as

(nearly) the instantaneous variance of the return, as is the case of γ1 = 1. This helps

select appropriate parameter values of the SDE for Vt together with its initial value, V0.

In applying the approximation formula, the SDE for the log spot price, st = lnSt, is

actually required. By the Ito formula,

dst =
�
rt −

1

2
Vt e

2(γ1−1)(st−s0)
�
dt+

�
Vt e

(γ1−1)(st−s0)dW1,t . (30)

As for the instantaneous risk-free rate, both cases of deterministic and stochastic rates

are considered. Since the accuracy results are similar between the two cases, only the

former is reported while the latter is available upon request.

The input values for option prices are as follows: S0 = 1; K = 0.9, 1.0, 1.1; t = 0.5

(half a year); V0 = 0.152; and rt = 0 (constant). These values are basically determined

following HW (1987, Table II).

Before reporting the numerical results, it is noted that the accuracy of the proposed

method improves by the logarithmic transformation of the volatility process, i.e., vt = lnVt.

This can be explained as follows. Looking at Table 1, where (st, Vt, Zt) is substituted for

(x1,t, x2,t, x3,t), E0[Zt−Z0] is in the third row of the moment vector, Ψ0,t. Then, by Eq.(7),

the third row of the matrix A is the most influential for this calculation. The third row of

A consists of the partial derivatives of the drift function of Zt. From Eqs.(26) and (30),

the drift function of Zt is given by

f3(x1,t, x2,t, x3,t) = µz(st, Vt, Zt) = (α− 1)
�
rt +

1

2
αVte

2(γ1−1)(st−s0)
�
Zt . (31)

Since µz is linear in Vt, the second partial derivative with respect to Vt is zero, i.e.,

f (0,2,0)
3 = 0. This is the (3, 5)-element of A, which multiplies the fifth element of Ψ0,u,

i.e., E0[(Vu − V0)2], on the right-hand side of Eq.(7). Then, f (0,2,0)
3 = 0 indicates that
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the conditional second moment of (an increment of) Vt is not effectively used for the

computation of E0[Zt − Z0].

After the logarithmic transformation of Vt, on the other hand, this problem is avoided.

After the transformation, µz becomes

f3(x1,t, x2,t, x3,t) = µz(st, vt, Zt) = (α− 1)
�
rt +

1

2
αe2(γ1−1)(st−s0)+vt

�
Zt , (32)

which is nonlinear in vt. Thus, the coefficient of E0[(vu − v0)2], f
(0,2,0)
3 , is nonzero. The

numerical results reported below are those after this transformation. For ease of reference

to Table 1, the functional forms of fi and gij (i, j = 1, 2, 3) for the SV-CEV model are

summarized in Table 2.

It is important to note that there are many models proposed in the literature in which

the dynamics of the logarithmic volatility are directly specified: see, e.g., Andersen et al.

(2002), Chernov et al. (2003), and Scott (1987). An advantage of the logarithmic volatility

models is to ensure non-negativity of the volatility process without placing parameter

constraints. A difficulty, on the other hand, is to lose analytical tractability of option

prices. The proposed method may then have potential to overcome this difficulty.

4.2 Accuracy results for the SV-CEV model

As a base case, the parameter values for the SV-CEV model are set to

(γ1, κ2, θ2, σ2, γ2, ρ12) = (0.75, 1.0, 0.152, 1.0, 1.0, −0.5) .

In particular, σ2 = γ2 = 1 is determined with reference also to HW (1987, Table II). Some

of these values are then changed to further examine the cases in which the approximation

is (in)accurate. It is noted that γ1 < 1 and −1 < ρ12 < 0 contribute to capturing the

so-called leverage effect: the volatility of the spot price tends to be high when the spot

price falls than rises. Various combinations of (γ1, ρ12) are also tried, the results of which

are similar to those reported below.

Table 3 presents put option prices (multiplied by 100) and relative pricing errors

(expressed in %) in various cases. Panel A of Table 3 presents the results of the base

case. First, the second-order approximation, AP2, overvalues the out-of-the-money (OTM,

K/S0 = 0.9) option by 8.4% and undervalues the at-the-money (ATM, K/S0 = 1.0) op-

tion by 2.0%. The approximation error for the OTM option appears large, however, the

absolute difference between the AP2 and MC prices is 0.086×10−2, or equivalently 0.086%

of the spot price, S0 = 1. It is not surprising that the approximation error for the in-the-

money (ITM, K/S0 = 1.1) option is very small, as the option value trivially approaches

e−rtK − S0, irrespective of the computation methods involved. Second, the third-order

approximation, AP3, achieves high accuracy. Specifically, the approximation error for the

OTM option is reduced to around 1% and that for the ATM option is negligibly small.

10



Panel B of Table 3 presents the results when the maturity length is extended to one

year, t = 1. In theory, the accuracy of the approximation decreases with increasing

maturity. In reality, however, the results are mixed between the ATM and OTM options.

While the former is not much affected, the accuracy for the latter becomes worse than

that in the base case. Still, AP3 seems effective.

Next, the initial value of the volatility process is increased to V0 = 0.32, assuming the

case where the current volatility level is unusually high relative to its long-term mean,

θ2 = 0.152. Panel C of Table 3 shows that while AP2 becomes worse, especially for the

ATM and ITM options, AP3 continues to work well. The decrease in the accuracy due to

the larger V0 is mitigated when both V0 and θ2 are increased to 0.32, as shown in Panel D

of Table 3. The results of Panels C and D indicate that the proposed method tends to be

more accurate when the current state values are around the long-term means than when

they are distant.

Increasing the volatility of Vt by doubling the value of σ2 results in the deterioration

of the accuracy, as shown in Panel E of Table 3. In fact, this is the most difficult case for

the proposed method, where even AP3 undervalues the OTM option by nearly 30%. The

increase in σ2 makes the variation in Vt higher, which in turn makes the leptokurtosis of

the return distribution higher. In this case, the difficulty of the approximation arises. A

similar problem seems to appear in the HW approximation: HW (1987, p. 294). Note that

higher variation in Vt can also be generated by a larger V0 through the CEV specification.

In this case, however, the deterioration of the accuracy can be avoided by the third-order

approximation, as shown in Panels C and D of Table 3.

On the other hand, increasing the speed of mean reversion of Vt by doubling the

value of κ2 improves the accuracy, as shown in Panel F of Table 3. In particular, even

AP2 performs reasonably well. This improvement occurs because faster mean reversion

virtually reduces the variation in Vt and thus the leptokurtosis of the return distribution.

Next is the case where the increase in κ2 does not necessarily reduce the variation in

Vt. Given κ2 = 2, the value of σ2 is raised such that the unconditional variance of Vt,

(θ2σ2)2/(2κ2 − σ2
2), remains the same as that in the base case. This is achieved by setting

σ2 =
√
2 with θ2 unchanged. Panel G of Table 3 shows that due to the increase in σ2,

the error magnitude generally increases from that in Panel F of Table 3. Compared to

the base case, the error magnitude for the OTM option is larger, indicating that the effect

of the large σ2 (higher variation) dominates that of the large κ2 (faster mean reversion).

Conversely, the error magnitude for the ATM option is smaller and that for the ITM

option is similar, indicating that the effect of faster mean reversion prevails.

Although these cases are artificial and limited, they seem to reveal when the proposed

method is (in)accurate together with the magnitude of approximation errors. Overall, the

good performance of the approximation can be expected when the volatility process is not

too volatile. In reality, the volatility process does not seem too volatile when it is estimated

11



from the time-series of the spot price. When estimated from the cross-section of option

prices, it is reported to be too volatile: see, e.g., Bakshi et al. (1997), and Bates (1996,

2000). This is because high variation in the volatility process is required for generating

high leptokurtosis of the return distribution, which in turn is required for explaining the

implied volatility surface, especially at short maturity. This too volatile behavior under

the risk-neutral measure may suggest that the diffusion component alone has difficulty in

generating a sufficient degree of leptokurtosis. This difficulty is mitigated by introducing

jumps. Then, the proposed method may actually be more effective when it is combined

with the jump component. It is important to note that even after the inclusion of the jump

component, the role of the diffusion component is reported to be decisive for capturing

not only time-varying second moment and negative skewness of the return distribution,

but also the term structure of implied volatilities: see Das and Sundaram (1999), Carr

and Wu (2003b), and Huang and Wu (2004). Besides, diffusion models can be used for

describing stochastic variations in the arrival rate of jumps: see Carr et al. (2003), and

Huang and Wu (2004). The proposed method may contribute to searching appropriate

models of the diffusion component, which is left for future study.

5 Identification of Effective Higher-Order Moments

Based on the previous results that the third-order approximation improves the accuracy,

this section examines which of the conditional third moments added to Ψn=2
0,t have a greater

contribution to this improvement. It is useful to discriminate such effective moments from

those of little significance. The latter moments can be removed from Ψn=3
0,t to reduce

the computational burden without much reducing the accuracy. The findings from this

analysis are particularly useful for high-dimensional models, where the dimension of a

moment vector increases rapidly with the number of factors: in general, the length of

Ψs,t consisting of up to n-th conditional moments of a d-dimensional process is
�n+d

n

�

−1 = (n+ d)!/(n!d!)− 1.

The following three moment vectors are considered:

AP3–0** : (Ψn=2 �
0,t ψ300,0,t ψ210,0,t ψ201,0,t ψ120,0,t ψ111,0,t ψ102,0,t)

� ,

AP3–*0* : (Ψn=2 �
0,t ψ030,0,t ψ210,0,t ψ120,0,t ψ111,0,t ψ021,0,t ψ012,0,t)

� ,

AP3–**0 : (Ψn=2 �
0,t ψ003,0,t ψ201,0,t ψ111,0,t ψ102,0,t ψ021,0,t ψ012,0,t)

� .

The moment vector labeled AP3–0** contains the conditional third moments except those

not related to st, ψ0∗∗, leading to the abbreviation as –0**. The moment vectors labeled

AP3–*0* and AP3–**0 are constructed analogously. The dimension of these vectors is

fifteen.

Table 4 presents put option prices (multiplied by 100) and relative pricing errors (ex-

pressed in %) for the simplified third-order approximations in the base case: for ease of
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comparison, the previous results in Panel A of Table 3 are also presented. First, in terms

of similarity to the performance of AP3, AP3–*0* ranks first. In fact, the error pattern

little changes. The result indicates that the conditional third moments related to vt have a

fundamental role for the improvement of the accuracy. This makes sense, as the accuracy

is measured in terms of option prices, which are highly sensitive to the volatility process.

Also, the error magnitude for AP3–**0 remains almost the same as that for AP3. On the

other hand, while AP3–0** actually improves AP2, the error pattern is more similar to

AP2 than AP3. This result indicates that the conditional third moments related to st do

not contribute much to the improvement of the accuracy.

Further investigation reveals that among the conditional third moments related to vt

(and Zt), ψ021,0,t = E0[(vt − v0)2(Zt − Z0)] is the most influential. The following moment

vector of dimension ten, labeled AP2+021, is considered: (Ψn=2 �
s,t ψ021,0,t)�. The relative

pricing errors for AP2+021 are also presented in Table 4, showing that the accuracy is

not much decreased from that of AP3 with the computational burden similar to that of

AP2. This result is robust to various cases considered in the previous section.

6 Concluding Remarks

This study proposed an approximation of European option prices that can be efficiently

computed under flexibly specified diffusion models of the spot price. An analytical approx-

imation to the characteristic function of the log spot price is first obtained as the solution

to ordinary differential equations, and then Fourier inversion is applied to obtain option

prices. Using a stochastic volatility model in which both the spot price and volatility

processes have the constant elasticity of volatility specification, Monte Carlo simulations

revealed that the third-order approximation generally achieves high accuracy, except when

the volatility process exhibits high variation, and that the second-order approximation is

effective in some cases, especially when mean reversion of the volatility process is relatively

fast.
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[A]i,j 1 2 3 4 5

1 f (1,0,0)
1 f (0,1,0)

1 f (0,0,1)
1 f (2,0,0)

1 /2 f (0,2,0)
1 /2

2 f (1,0,0)
2 f (0,1,0)

2 f (0,0,1)
2 f (2,0,0)

2 /2 f (0,2,0)
2 /2

3 f (1,0,0)
3 f (0,1,0)

3 f (0,0,1)
3 f (2,0,0)

3 /2 f (0,2,0)
3 /2

4 2f1 + g(1,0,0)11 g(0,1,0)11 g(0,0,1)11 2f (1,0,0)
1 + g(2,0,0)11 /2 g(0,2,0)11 /2

5 g(1,0,0)22 2f2 + g(0,1,0)22 g(0,0,1)22 g(2,0,0)22 /2 2f (0,1,0)
2 + g(0,2,0)22 /2

6 g(1,0,0)33 g(0,1,0)33 2f3 + g(0,0,1)33 g(2,0,0)33 /2 g(0,2,0)33 /2

7 f2 + g(1,0,0)12 f1 + g(0,1,0)12 g(0,0,1)12 f (1,0,0)
2 + g(2,0,0)12 /2 f (0,1,0)

1 + g(0,2,0)12 /2

8 f3 + g(1,0,0)13 g(0,1,0)13 f1 + g(0,0,1)13 f (1,0,0)
3 + g(2,0,0)13 /2 g(0,2,0)13 /2

9 g(1,0,0)23 f3 + g(0,1,0)23 f2 + g(0,0,1)23 g(2,0,0)23 /2 f (0,1,0)
3 + g(0,2,0)23 /2

10 3g11 0 0 3f1 + 3g(1,0,0)11 0

11 0 3g22 0 0 3f2 + 3g(0,1,0)22

12 0 0 3g33 0 0

13 2g12 g11 0 f2 + 2g(1,0,0)12 g(0,1,0)11

14 2g13 0 g11 f3 + 2g(1,0,0)13 0

15 g22 2g12 0 g(1,0,0)22 f1 + 2g(0,1,0)12

16 g23 g13 g12 g(1,0,0)23 g(0,1,0)13

17 g33 0 2g13 g(1,0,0)33 0

18 0 2g23 g22 0 f3 + 2g(0,1,0)23

19 0 g33 2g23 0 g(0,1,0)33

[b]j f1 f2 f3 g11 g22

Table 1:
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6 7 8 9

f (0,0,2)
1 /2 f (1,1,0)

1 f (1,0,1)
1 f (0,1,1)

1

f (0,0,2)
2 /2 f (1,1,0)

2 f (1,0,1)
2 f (0,1,1)

2

f (0,0,2)
3 /2 f (1,1,0)

3 f (1,0,1)
3 f (0,1,1)

3

g(0,0,2)11 /2 2f (0,1,0)
1 + g(1,1,0)11 2f (0,0,1)

1 + g(1,0,1)11 g(0,1,1)11

g(0,0,2)22 /2 2f (1,0,0)
2 + g(1,1,0)22 g(1,0,1)22 2f (0,0,1)

2 + g(0,1,1)22

2f (0,0,1)
3 + g(0,0,2)33 /2 g(1,1,0)33 2f (1,0,0)

3 + g(1,0,1)33 2f (0,1,0)
3 + g(0,1,1)33

g(0,0,2)12 /2 f (1,0,0)
1 + f (0,1,0)

2 + g(1,1,0)12 f (0,0,1)
2 + g(1,0,1)12 f (0,0,1)

1 + g(0,1,1)12

f (0,0,1)
1 + g(0,0,2)13 /2 f (0,1,0)

3 + g(1,1,0)13 f (1,0,0)
1 + f (0,0,1)

3 + g(1,0,1)13 f (0,1,0)
1 + g(0,1,1)13

f (0,0,1)
2 + g(0,0,2)23 /2 f (1,0,0)

3 + g(1,1,0)23 f (1,0,0)
2 + g(1,0,1)23 f (0,1,0)

2 + f (0,0,1)
3 + g(0,1,1)23

0 3g(0,1,0)11 3g(0,0,1)11 0

0 3g(1,0,0)22 0 3g(0,0,1)22

3f3 + 3g(0,0,1)33 0 3g(1,0,0)33 3g(0,1,0)33

0 2f1 + g(1,0,0)11 + 2g(0,1,0)12 2g(0,0,1)12 g(0,0,1)11

g(0,0,1)11 2g(0,1,0)13 2f1 + g(1,0,0)11 + 2g(0,0,1)13 g(0,1,0)11

0 2f2 + g(0,1,0)22 + 2g(1,0,0)12 g(0,0,1)22 2g(0,0,1)12

g(0,0,1)12 f3 + g(1,0,0)13 + g(0,1,0)23 f2 + g(1,0,0)12 + g(0,0,1)23 f1 + g(0,1,0)12 + g(0,0,1)13

f1 + 2g(0,0,1)13 g(0,1,0)33 2f3 + g(0,0,1)33 + 2g(1,0,0)13 2g(0,1,0)13

g(0,0,1)22 2g(1,0,0)23 g(1,0,0)22 2f2 + g(0,1,0)22 + 2g(0,0,1)23

f2 + 2g(0,0,1)23 g(1,0,0)33 2g(1,0,0)23 2f3 + g(0,0,1)33 + 2g(0,1,0)23

g33 g12 g13 g23

Table 1 (continued):
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10 11 12 13

f (3,0,0)
1 /6 f (0,3,0)

1 /6 f (0,0,3)
1 /6 f (2,1,0)

1 /2

f (3,0,0)
2 /6 f (0,3,0)

2 /6 f (0,0,3)
2 /6 f (2,1,0)

2 /2

f (3,0,0)
3 /6 f (0,3,0)

3 /6 f (0,0,3)
3 /6 f (2,1,0)

3 /2

f (2,0,0)
1 + g(3,0,0)11 /6 g(0,3,0)11 /6 g(0,0,3)11 /6 2f (1,1,0)

1 + g(2,1,0)11 /2

g(3,0,0)22 /6 f (0,2,0)
2 + g(0,3,0)22 /6 g(0,0,3)22 /6 f (2,0,0)

2 + g(2,1,0)22 /2

g(3,0,0)33 /6 g(0,3,0)33 /6 f (0,0,2)
3 + g(0,0,3)33 /6 g(2,1,0)33 /2

f (2,0,0)
2 /2 + g(3,0,0)12 /6 f (0,2,0)

1 /2 + g(0,3,0)12 /6 g(0,0,3)12 /6 f (2,0,0)
1 /2 + f (1,1,0)

2 + g(2,1,0)12 /2

f (2,0,0)
3 /2 + g(3,0,0)13 /6 g(0,3,0)13 /6 f (0,0,2)

1 /2 + g(0,0,3)13 /6 f (1,1,0)
3 + g(2,1,0)13 /2

g(3,0,0)23 /6 f (0,2,0)
3 /2 + g(0,3,0)23 /6 f (0,0,2)

2 /2 + g(0,0,3)23 /6 f (2,0,0)
3 /2 + g(2,1,0)23 /2

3f (1,0,0)
1 + 1.5g(2,0,0)11 0 0 3f (0,1,0)

1 + 3g(1,1,0)11

0 3f (0,1,0)
2 + 1.5g(0,2,0)22 0 1.5g(2,0,0)22

0 0 3f (0,0,1)
3 + 1.5g(0,0,2)33 0

f (1,0,0)
2 + g(2,0,0)12 g(0,2,0)11 /2 0 2f (1,0,0)

1 + f (0,1,0)
2 + g(2,0,0)11 /2 + 2g(1,1,0)12

f (1,0,0)
3 + g(2,0,0)13 0 g(0,0,2)11 /2 f (0,1,0)

3 + 2g(1,1,0)13

g(2,0,0)22 /2 f (0,1,0)
1 + g(0,2,0)12 0 2f (1,0,0)

2 + g(1,1,0)22 + g(2,0,0)12

g(2,0,0)23 /2 g(0,2,0)13 /2 g(0,0,2)12 /2 f (1,0,0)
3 + g(2,0,0)13 /2 + g(1,1,0)23

g(2,0,0)33 /2 0 f (0,0,1)
1 + g(0,0,2)13 g(1,1,0)33

0 f (0,1,0)
3 + g(0,2,0)23 g(0,0,2)22 /2 g(2,0,0)23

0 g(0,2,0)33 /2 f (0,0,1)
2 + g(0,0,2)23 g(2,0,0)33 /2

0 0 0 0

Table 1 (continued):
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14 15 16

f (2,0,1)
1 /2 f (1,2,0)

1 /2 f (1,1,1)
1

f (2,0,1)
2 /2 f (1,2,0)

2 /2 f (1,1,1)
2

f (2,0,1)
3 /2 f (1,2,0)

3 /2 f (1,1,1)
3

2f (1,0,1)
1 + g(2,0,1)11 /2 f (0,2,0)

1 + g(1,2,0)11 /2 2f (0,1,1)
1 + g(1,1,1)11

g(2,0,1)22 /2 2f (1,1,0)
2 + g(1,2,0)22 /2 2f (1,0,1)

2 + g(1,1,1)22

f (2,0,0)
3 + g(2,0,1)33 /2 g(1,2,0)33 /2 2f (1,1,0)

3 + g(1,1,1)33

f (1,0,1)
2 + g(2,0,1)12 /2 f (1,1,0)

1 + f (0,2,0)
2 /2 + g(1,2,0)12 /2 f (1,0,1)

1 + f (0,1,1)
2 + g(1,1,1)12

f (2,0,0)
1 /2 + f (1,0,1)

3 + g(2,0,1)13 /2 f (0,2,0)
3 /2 + g(1,2,0)13 /2 f (1,1,0)

1 + f (0,1,1)
3 + g(1,1,1)13

f (2,0,0)
2 /2 + g(2,0,1)23 /2 f (1,1,0)

3 + g(1,2,0)23 /2 f (1,1,0)
2 + f (1,0,1)

3 + g(1,1,1)23

3f (0,0,1)
1 + 3g(1,0,1)11 1.5g(0,2,0)11 3g(0,1,1)11

0 3f (1,0,0)
2 + 3g(1,1,0)22 3g(1,0,1)22

1.5g(2,0,0)33 0 3g(1,1,0)33

f (0,0,1)
2 + 2g(1,0,1)12 2f (0,1,0)

1 + g(1,1,0)11 + g(0,2,0)12 2f (0,0,1)
1 + g(1,0,1)11 + 2g(0,1,1)12

2f (1,0,0)
1 + f (0,0,1)

3 + g(2,0,0)11 /2 + 2g(1,0,1)13 g(0,2,0)13 2f (0,1,0)
1 + g(1,1,0)11 + 2g(0,1,1)13

g(1,0,1)22 2f (0,1,0)
2 + f (1,0,0)

1 + g(0,2,0)22 /2 + 2g(1,1,0)12 2f (0,0,1)
2 + g(0,1,1)22 + 2g(1,0,1)12

f (1,0,0)
2 + g(2,0,0)12 /2 + g(1,0,1)23 f (0,1,0)

3 + g(1,1,0)13 + g(0,2,0)23 /2 f (1,0,0)
1 + f (0,1,0)

2 + f (0,0,1)
3 + g(1,1,0)12 + g(1,0,1)13 + g(0,1,1)23

2f (1,0,0)
3 + g(1,0,1)33 + g(2,0,0)13 g(0,2,0)33 /2 2f (0,1,0)

3 + g(0,1,1)33 + 2g(1,1,0)13

g(2,0,0)22 /2 f (1,0,0)
3 + 2g(1,1,0)23 2f (1,0,0)

2 + g(1,1,0)22 + 2g(1,0,1)23

g(2,0,0)23 g(1,1,0)33 2f (1,0,0)
3 + g(1,0,1)33 + 2g(1,1,0)23

0 0 0

Table 1 (continued):
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17 18 19

f (1,0,2)
1 /2 f (0,2,1)

1 /2 f (0,1,2)
1 /2

f (1,0,2)
2 /2 f (0,2,1)

2 /2 f (0,1,2)
2 /2

f (1,0,2)
3 /2 f (0,2,1)

3 /2 f (0,1,2)
3 /2

f (0,0,2)
1 + g(1,0,2)11 /2 g(0,2,1)11 /2 g(0,1,2)11 /2

g(1,0,2)22 /2 2f (0,1,1)
2 + g(0,2,1)22 /2 f (0,0,2)

2 + g(0,1,2)22 /2

2f (1,0,1)
3 + g(1,0,2)33 /2 f (0,2,0)

3 + g(0,2,1)33 /2 2f (0,1,1)
3 + g(0,1,2)33 /2

f (0,0,2)
2 /2 + g(1,0,2)12 /2 f (0,1,1)

1 + g(0,2,1)12 /2 f (0,0,2)
1 /2 + g(0,1,2)12 /2

f (1,0,1)
1 + f (0,0,2)

3 /2 + g(1,0,2)13 /2 f (0,2,0)
1 /2 + g(0,2,1)13 /2 f (0,1,1)

1 + g(0,1,2)13 /2

f (1,0,1)
2 + g(1,0,2)23 /2 f (0,2,0)

2 /2 + f (0,1,1)
3 + g(0,2,1)23 /2 f (0,1,1)

2 + f (0,0,2)
3 /2 + g(0,1,2)23 /2

1.5g(0,0,2)11 0 0

0 3f (0,0,1)
2 + 3g(0,1,1)22 1.5g(0,0,2)22

3f (1,0,0)
3 + 3g(1,0,1)33 1.5g(0,2,0)33 3f (0,1,0)

3 + 3g(0,1,1)33

g(0,0,2)12 g(0,1,1)11 g(0,0,2)11 /2

2f (0,0,1)
1 + g(1,0,1)11 + g(0,0,2)13 g(0,2,0)11 /2 g(0,1,1)11

g(0,0,2)22 /2 f (0,0,1)
1 + 2g(0,1,1)12 g(0,0,2)12

f (0,0,1)
2 + g(1,0,1)12 + g(0,0,2)23 /2 f (0,1,0)

1 + g(0,2,0)12 /2 + g(0,1,1)13 f (0,0,1)
1 + g(0,1,1)12 + g(0,0,2)13 /2

2f (0,0,1)
3 + f (1,0,0)

1 + g(0,0,2)33 /2 + 2g(1,0,1)13 g(0,2,0)13 f (0,1,0)
1 + 2g(0,1,1)13

g(1,0,1)22 2f (0,1,0)
2 + f (0,0,1)

3 + g(0,2,0)22 /2 + 2g(0,1,1)23 2f (0,0,1)
2 + g(0,1,1)22 + g(0,0,2)23

f (1,0,0)
2 + 2g(1,0,1)23 2f (0,1,0)

3 + g(0,1,1)33 + g(0,2,0)23 2f (0,0,1)
3 + f (0,1,0)

2 + g(0,0,2)33 /2 + 2g(0,1,1)23

0 0 0

Table 1 (continued):
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Table 1 (continued): The elements of A(Xs) and b(Xs) for the third-order approximation

The moment vector Ψn=3
s,t consists of up to the conditional third moments of a three-dimensional process, Xt = (x1,t x2,t x3,t)′, in the following

order: define ψpqr,s,t = Es[(x1,t − x1,s)p(x2,t − x2,s)q(x3,t − x3,s)r], and

Ψn=2
s,t = (ψ100,s,t ψ010,s,t ψ001,s,t ψ200,s,t ψ020,s,t ψ002,s,t ψ110,s,t ψ101,s,t ψ011,s,t)

′ ,

Ψn=3
s,t = (Ψn=2 ′

s,t ψ300,s,t ψ030,s,t ψ003,s,t ψ210,s,t ψ201,s,t ψ120,s,t ψ111,s,t ψ102,s,t ψ021,s,t ψ012,s,t)
′ .

A(Xs) and b(Xs) for Ψn=2
s,t are the 9 × 9 upper left submatrix of A(Xs) and the 9 × 1 subvector of b(Xs) for Ψn=3

s,t , respectively. The SDEs

for xi,t (i = 1, 2, 3) are dxi,t = fi(Xt)dt+ ξi(Xt)′dWt, and the notations in the table are as follows: gij = ξ′iξj ,

f (k,l,m)
i =

∂fk+l+m
i

∂xk1∂x
l
2∂x

m
3

, and g(k,l,m)
ij =

∂gk+l+m
ij

∂xk1∂x
l
2∂x

m
3

.
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f1(st, vt, Zt) = Et[dst]/dt = rt − g11/2

f2(st, vt, Zt) = Et[dvt]/dt = κ2(θ2 exp (−vt)− 1)− g22/2

f3(st, vt, Zt) = Et[dZt]/dt = (−rt + αf1 + α2g11/2)Zt

g11(st, vt, Zt) = Et[(dst)2]/dt = exp (2(γ1 − 1)(st − s0) + vt)

g22(st, vt, Zt) = Et[(dvt)2]/dt = σ2
2 exp (2(γ2 − 1)vt)

g33(st, vt, Zt) = Et[(dZt)2]/dt = (αZt)2g11

g12(st, vt, Zt) = Et[dstdvt]/dt = σ2ρ12 exp ((γ1 − 1)(st − s0) + (γ2 − 0.5)vt)

g13(st, vt, Zt) = Et[dstdZt]/dt = αZtg11

g23(st, vt, Zt) = Et[dvtdZt]/dt = αZtg12

Table 2: The functions based on which the elements of A and b are computed

The SV-CEV model has the following SDEs for the log spot price process, st, and the log

volatility process, vt:

dst =
�
rt −

1

2
e2(γ1−1)(st−s0)+vt

�
dt+ e(γ1−1)(st−s0)+vt/2dW1,t ,

dvt =
�
κ2(θ2e

−vt − 1)− 1

2
σ2
2e

2(γ2−1)vt

�
dt+ σ2e

(γ2−1)vtdW2,t .

The SDE for Zt is given by Eqs.(25)–(27). The order of the listed functions corresponds

to the moment vector, Ψn=2
s,t , given by Eq.(15).
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Put Option Prices (×100) Relative Pricing Errors (%)

K/S0 0.9 1.0 1.1 0.9 1.0 1.1

Panel A: Base case

AP2 1.115 4.057 10.898 8.43 −2.02 0.31

AP3 1.017 4.136 10.843 −1.17 −0.11 −0.20

MC 1.029 4.141 10.865

Panel B: t = 1

AP2 2.524 5.703 12.264 13.28 −1.36 1.87

AP3 2.172 5.785 12.000 −2.54 0.06 −0.32

MC 2.229 5.782 12.039

Panel C: V0 = 0.32

AP2 3.998 7.118 13.839 10.91 −5.51 2.09

AP3 3.558 7.468 13.511 −1.29 −0.86 −0.33

MC 3.605 7.533 13.556

Panel D: V0 = 0.32 and θ2 = 0.32

AP2 4.394 8.060 14.398 5.23 −2.16 1.26

AP3 4.173 8.244 14.215 −0.05 0.07 −0.02

MC 4.175 8.238 14.218

Penel E: σ2 = 2

AP2 1.535 3.621 10.840 40.65 −7.63 1.65

AP3 0.769 3.813 10.237 −29.55 −2.71 −4.01

MC 1.092 3.920 10.665

Panel F: κ2 = 2

AP2 1.071 4.128 10.916 5.90 −0.70 0.20

AP3 1.001 4.161 10.885 −1.02 0.10 −0.09

MC 1.011 4.157 10.895

Panel G: κ2 = 2 and σ2 =
√
2

AP2 1.177 4.046 10.862 12.26 −1.30 0.39

AP3 1.000 4.098 10.767 −4.63 −0.02 −0.49

MC 1.049 4.099 10.820

Table 3: Accuracy results in various cases

The relative pricing error is defined as pap/pmc − 1, where pap and pmc denote the option

prices computed by the approximation and MC methods, respectively. The SV-CEV

model is originally specified as

dSt/St = rtdt+
�
Vt (St/S0)

γ1−1dW1,t , dVt = κ2(θ2 − Vt)dt+ σ2V
γ2
t dW2,t ,

with Et[dW1,t dW2,t] = ρ12dt. The parameter values are set to (γ1, κ2, θ2, σ2, γ2, ρ12) =

(0.75, 1.0, 0.152, 1.0, 1.0, −0.5). The input values are as follows: S0 = 1; K = 0.9, 1.0, 1.1;

t = 0.5 (half a year); V0 = 0.152; and rt = 0 (constant). These parameter and input values

form a base case. Some of them are then changed as indicated in each panel.
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Put Option Prices (×100) Relative Pricing Errors (%)

K/S0 0.9 1.0 1.1 0.9 1.0 1.1

AP2 1.115 4.057 10.898 8.43 −2.02 0.31

AP3 1.017 4.136 10.843 −1.17 −0.11 −0.20

AP3–0** 1.091 4.066 10.878 6.10 −1.82 0.12

AP3–*0* 1.014 4.137 10.845 −1.38 −0.11 −0.19

AP3–**0 1.041 4.156 10.882 1.20 0.35 0.16

AP2+021 1.047 4.147 10.886 1.83 0.14 0.20

Table 4: Accuracy results for the simplified third-order approximations in the

base case

The simplified third-order approximations correspond to the following moment vectors:

AP3–0** : (Ψ
n=2 �
0,t ψ300,0,t ψ210,0,t ψ201,0,t ψ120,0,t ψ111,0,t ψ102,0,t)

� ,

AP3–*0* : (Ψ
n=2 �
0,t ψ030,0,t ψ210,0,t ψ120,0,t ψ111,0,t ψ021,0,t ψ012,0,t)

� ,

AP3–**0 : (Ψ
n=2 �
0,t ψ003,0,t ψ201,0,t ψ111,0,t ψ102,0,t ψ021,0,t ψ012,0,t)

� ,

where Ψn=2
0,t is a nine dimensional vector consisting of the conditional second moments

of increments of (st, vt, Zt) and ψpqr,0,t = E0[(st − s0)p(vt − v0)q(Zt − Z0)
r]. AP2+021

corresponds to the moment vector as (Ψn=2 �
0,t ψ021,0,t)

�.
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