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Abstract

This paper attempts to predict the volatility of interest rates through dynamic

term structure models. For this attempt, the models are improved, based on the

three-factor Gaussian model, to have level-dependent volatilities supported by data.

The empirical results show that the predictive power of the proposed models is higher

than that of the affine models. Compared with time-series models, it is low for the

four-week forecasting horizon but can be comparable for middle to long term rates by

extending the horizon up to 32 weeks. The combination of these two different types

of forecasts can lead to higher predictive power.

Keywords: Term structure, Stochastic volatility, Realized volatility, Approximation of

conditional moments.

1



1 Introduction

It does not seem unreasonable to think that the current yield curve contains some informa-

tion on the volatility of changes in interest rates. In making bond portfolios or managing

interest rate risks, investors will take account of conditional second moments of bond re-

turns or yield changes. The resulting shape of the yield curve will then reflect investors’

views toward the volatility. This paper attempts to predict the volatility by utilizing such

information through dynamic term structure models. For this attempt, the models are

improved without sacrificing the goodness-of-fit to the yield curve or the predictive power

to the level of interest rates. This improvement will contribute to extending the versatility

of the term structure models.

The idea of relating interest rate volatility to the yield curve is not new. Brown and

Schaefer (1994), Christiansen and Lund (2005), Litterman, Scheinkman, and Weiss (1991),

and Phoa (1997) relate the volatility to the curvature, or convexity, of the yield curve.

Time-series studies using long historical data on U.S. interest rates find a relation between

the volatility and the level of a particular yield, especially the short-term rate, such that

high volatility is accompanied by high level; see, e.g., Andersen and Lund (1997a), Ball

and Torous (1999), Chan, Karolyi, Longstaff, and Sanders (1992), Durham (2003), and

Gallant and Tauchen (1998).

This simple level-volatility relation, however, no longer seems to be a decisive feature

for relatively recent data. Figure 1 shows the time series of interest rates and realized

volatilities (annualized standard deviations) constructed from U.S. dollar LIBOR and swap

rates over 1991–2009: the details of the construction of the realized volatility measure are

provided in Section 2. We notice that the sharp rise in the volatility, observed around

2001–03 and 2008–09, is actually accompanied by the fall in the level of interest rates.

It is, therefore, not surprising that more recent studies using these data are skeptical

about the possibility of extracting volatility information from the yield curve. Andersen

and Benzoni (AB) (2010) test affine spanning conditions that the yield variance, both

ex ante and ex post, can be expressed by a linear combination of yields if affine term

structure models are true, and reject these conditions. Collin-Dufresne, Goldstein, and

Jones (CDGJ) (2009), and Jacobs and Karoui (JK) (2009) report that yield variances

extracted from the cross-section of yields through affine term structure models do not

behave similarly to typical variance measures in time series.
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Nevertheless, it may be too early to draw the conclusion. Some important issues are

left unaddressed. The first issue is the predictability of the volatility over long forecasting

horizons: AB (2010) considered up to one-month horizons and CDGJ (2009) considered the

one-week horizon. Longer horizons are worth considering, however. In predicting the level

of yields such as in the context of the efficient hypothesis of the term structure (EHT),

the horizons longer than a month are often considered; see, e.g., Bekaert and Hodrick

(2001), Campbell and Shiller (1991), Duffee (2002), and Fama and Bliss (1987). Then,

if we match the horizon of the volatility forecast with that of the level forecast typically

considered, the predictability of the risk-return relation implied by the yield curve can be

explored. The second issue is the use of non-affine term structure models for extracting the

volatility. The affine models used by CDGJ (2009), and JK (2009) have restrictions that

are necessary for obtaining a closed-form expression of bond prices and yields. Removing

such restrictions may improve the model’s ability of capturing the volatility.

To address the first issue, we perform the volatility forecasting regression with par-

ticular attention to long horizons and out-of-sample performance. We use daily data to

construct weekly data on a realized yield variance measure over 4-, 8-, 16-, and 32-week

horizons. It is then regressed on a linear combination of the current yields. The possibil-

ity of a nonlinear relation between them is also considered in a relatively simple way. We

make nonlinear transformations of the dependent variable, specifically the square-root and

logarithmic transformations, while leaving the independent variables linear. The results

are that the in-sample predictive power of the yield curve is not as bad as it is reported: it

improves the longer the forecasting horizon. On the other hand, the results of the out-of-

sample predictive power of the yield curve are mixed. We prepare two approaches for the

out-of-sample analysis. In the first approach where the parameter values of the regression

models are fixed at the in-sample estimates throughout the out-of-sample period, the pre-

dictive power deteriorates. In the second approach where the parameters are estimated

every time the prediction is made, the predictive power still remains high. Taken together,

at least some portion of volatility information seems to be contained in the yield curve,

but a simple linear combination of yields fails to produce a long-run predictive relation.

This motivates us to use dynamic term structure models for predicting the volatility.

To address the second issue, we attempt to develop term structure models without

sacrificing the goodness-of-fit to the cross-section of yields or the predictive power to
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the level of yields. Such models may naturally be outside a class of models having a

closed-form expression of bond prices and yields, which will be a major obstacle to this

research. We overcome this obstacle by relying on an analytical approximation proposed

by Shoji (2002), and Takamizawa and Shoji (2009). This method approximates a vector

of conditional moments as the solution to an ordinary differential equation (ODE). Since

the price of a zero-coupon bond is derived as the conditional expectation of the stochastic

discount factor, this method can be directly applied. The accuracy of the approximation,

which is carefully investigated also in this paper, seems to be maintained when realistic

values of parameter and state vectors are provided.

Now, what specification is appropriate for the volatility prediction without sacrificing

the desirable properties of the existing models? Clues to the answer can be found in the

existing models as well as in the results of the volatility forecasting regression. It is well

known that the three-factor Gaussian model can capture many important features of the

actual data, such as the failure of the EHT and a hump shape of unconditional volatilities

of changes in logarithmic yields; see Dai and Singleton (2003). An obvious drawback of

this model is constant volatility despite the fact that time-varying volatility is one of the

decisive features of the data. We then overcome this difficulty by making the volatility in

this model level-dependent, leading to a model in which all factors potentially contribute

to time-varying volatility.

To introduce the level-dependent volatility most effectively, we carefully choose a base-

line specification of the Gaussian model, which has numerous specifications depending on

factor rotation. One candidate is a classical specification, which is composed of the in-

stantaneous risk-free rate, a stochastic central tendency factor, and an additional factor;

see, e.g., Andersen and Lund (1997b), Balduzzi, Das, and Foresi (1998), Balduzzi, Das,

Foresi, and Sundaram (1996), and Bikbov and Chernov (2011). The former two factors

are expected to be highly correlated with short-term and long-term yields, respectively,

as is indeed the case shown later. Therefore, we can take advantage of the results of

the volatility forecasting regression that a combination of yields is more or less useful for

predicting the volatility.

Another care in the introduction of the level-dependent volatility is to keep the instan-

taneous covariance matrix of the factors positive definite. One simple way to meet this

requirement is to model eigenvalues of the covariance matrix as functions taking positive
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values. We propose two models for the time-varying eigenvalues: one given by quadratic

functions and the other by exponential functions. Apart from keeping the volatility pos-

itive, the positive definiteness of the covariance matrix has a significant merit. Since by

construction the inverse of the covariance matrix is well defied, the market prices of risks

can be modeled as flexibly as those for the original Gaussian model, which is the so-called

essentially affine specification; see Duffee (2002). Therefore, many of the advantages of the

Gaussian model are expected to be inherited into the proposed models, which is indeed

the case as shown later.

In comparing the volatility forecasting performance of the proposed models, we con-

sider both affine term structure models and time-series models. The latter include the

GARCH(1,1) model, which is estimated from lower frequency data. In addition, a variant

of the AR model employed by AB (2010) and the mixed data sampling (MIDAS) approach

developed by Ghysels, Santa-Clara, and Valkanov (2005, 2006) are also considered, both

of which are estimated from higher frequency data. The results of the performance com-

parison are summarized as follows. First, compared with the affine models, the proposed

models exhibit a superior performance in most of the cases. Second, compared with the

time-series models, the proposed models are outperformed for the four-week forecasting

horizon. By extending the horizon up to 32 weeks, while the high performance of the

time-series models continues at short maturities, the relative performance of the proposed

models increases. In fact, there are cases at middle to long maturities in which the pre-

dictive power of the proposed models is comparable, or even superior, to that of the

time-series models in both the in-sample and out-of-sample periods. Third, by combining

the forecast of the proposed models with that of the high-frequency regression model, the

predictive power can further increase at middle to long maturities. We also investigate

whether the improvement of the volatility prediction is attributable to the imposition of

non-arbitrage.

In spite of the improvement, the proposed models have a number of drawbacks. Apart

from the computational complexity due to the lack of closed-form expressions for bond

and derivative prices, we particularly point out two drawbacks. First, since the proposed

models are based on the Gaussian model, negative interest rates occur with positive prob-

ability. Second, the proposed models do not accommodate factors that affect derivative

prices but not underlying bond prices, in spite of the earlier work pointing out the exis-

5



tence and significance of such unspanned factors; see, e.g., Collin-Dufresne and Goldstein

(2002), Han (2007), Heidari and Wu (2003, 2009), Jarrow, Li, and Zhao (2007), and Li

and Zhao (2006). We also discuss how to overcome these difficulties.

Section 2 explains the data and how to construct a realized volatility measure. Section

3 performs the volatility forecasting regression. Section 4 introduces our models, and

explains pricing and estimation methods. Section 5 examines the volatility forecasting

performance of the proposed models. Section 6 provides concluding remarks. Appendices

collect supplementary analyses as well as technical arguments regarding the derivation and

accuracy of the approximation method.

2 Data and realized variance measure

2.1 Dataset

We use data on U.S. dollar LIBOR and swap rates, covering the period from January 4,

1991 to May 27, 2009. There are mainly two reasons for choosing this dataset. First,

we can make the purpose of predicting the volatility through term structure models more

challenging. As mentioned in Introduction and exhibited in Figure 1, parallel movements

in the level and volatility of a particular yield disappear in the recent data. Second, we can

focus on the volatility prediction without introducing an additional complexity of regime

switching. As documented by Dai, Singleton, and Yang (2007), this sample period can be

regarded as a single regime when viewed from the history of U.S. interest rates.

The LIBOR and swap rates are transformed to zero-coupon bond yields on a contin-

uously compounded basis using a bootstrap method with linear interpolation applied to

discount functions. The maturities of the zero yields used for the analysis are 0.5, 1, 2, 3,

5, and 10 years.

2.2 Realized measure

A realized measure of the conditional variance of changes in yields is constructed from the

daily data. We generate weekly, Wednesday, realized variance, where it is assumed that a

week begins with Thursday and ends with Wednesday. We choose Wednesday because we

later estimate term structure models using weekly, Wednesday, data. We have 960 weekly

observations of the realized variance in total, among which first 640 observations (two-
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thirds of the sample), ending on April 9, 2003, are used for the in-sample estimation and

the remaining 320 observations are used for the out-of-sample prediction. This division

is aimed at incorporating information on the lowest range of interest rates into model

estimation as well as reserving sufficient out-of-sample observations. Other ratios, three-

to-one and four-to-one, are also tried, and the differences in the results are not large

enough to change the conclusions of this paper.

A realized measure of the one-week ahead conditional variance of a τ -maturity yield

is computed as

RVt,t+∆,τ =
mt+∆�

i=1

(yt+ ∆
mt+∆

i,τ − yt+ ∆
mt+∆

(i−1),τ )
2
, (1)

where

• yt,τ : a zero-coupon bond yield at time t with τ years to maturity.

• ∆: a week interval set to 1/52.

• mt: the number of observations during a week ending at time t (usually mt = 5).

A realized measure of the h-week ahead conditional variance is computed as

RVt,t+h∆,τ =
h�

j=1

RVt,t+j∆,τ . (2)

The annualized realized variance is obtained by dividing RVt,t+h∆,τ by h∆. We consider

h = {4, 8, 16, 32}. The forecasting horizons of h > 4 are longer than previously considered.

The realized measure based on the daily data is crude. Discretization error arising

from approximating the integral of the quadratic variation may be large. This crude

measure, however, is more or less unavoidable because of the limited availability of intra-

daily data on interest rates; see CDGJ (2009), and JK (2009), where daily data are also

used to construct realized measures. Another concern is longer forecasting horizons. In

equations (1) and (2), the variation in the unpredictable component alone is reflected: the

covariation between the predictable and unpredictable components and the variation in

the predictable component are omitted, which are of smaller order than the variation in

the unpredictable component; see, e.g., Andersen, Bollerslev, Diebold, and Labys (2003).

The omission can be justified for a short horizon, say day or week, but it may not for a long

horizon considered in this paper. In particular, if the mean reversion, which is captured

by the predictable component, is crucial, the realized measure based on equations (1) and
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(2) will overestimate the true conditional variance since the mean reversion reduces the

yield variation over a finite horizon.

In Appendix A, we verify the impact of omitting the mean reversion on the realized

measure by applying to each yield the Cox, Ingersoll, and Ross (CIR) (1985) model, which

has a closed-form expression of the conditional variance for a finite horizon. Specifically,

letting β be a parameter in the drift controlling the speed of mean reversion, we compare

the conditional variance with β set at a point estimate from the actual data to that with β

set at zero. The summary of the results is as follows. The longer the maturity, the speed

of mean reversion tends to increase, so does the resulting overestimation of the realized

measure. However, since the estimate of β is not significantly different from zero, as is

often the case for interest rate data, the actual impact of regarding β to be zero is not as

serious as it appears.

3 Volatility Forecasting Regression

The purpose of this section is to examine if the current yield curve contains useful informa-

tion for predicting the volatility of changes in yields. We perform the volatility forecasting

regression with particular attention to the predictability for longer forecasting horizons

and out-of-sample.

3.1 Setup

We regress the h-week ahead realized measure computed over time t and t+ h∆ on linear

combinations of yields observed at time t:

Y-PART: f

�
RVt,t+h∆,τ

h∆

�
= ah,τ + b

�
h,τY

p
t + u

p
t+h∆,τ , (3)

where

Y
p
t = (yt,0.5 yt,2 yt,10)

�
,

and

Y-ALL: f

�
RVt,t+h∆,τ

h∆

�
= ah,τ + b

�
h,τY

a
t + u

a
t+h∆,τ , (4)

where

Y
a
t = (yt,0.5 yt,1 yt,2 yt,3 yt,5 yt,10)

�
.
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By considering a nonlinear function, f , the possibility of a nonlinear relation between

the realized measure and current yields can be addressed in a simple way. We actually

consider f(x) =
√
x and f(x) = lnx, as well as f(x) = x as in the earlier studies taking

account of an implication of the affine models. To conserve space, we do not report all

of the results with different f . But not surprisingly, the econometric specification is more

adequate on the standard deviation basis or the log variance basis than it is on the variance

basis. Below, we limit our attention to the standard deviation basis, i.e., f(x) =
√
x, which

allows for a more intuitive interpretation of the results.

For comparison, we also consider the following regression models based on the time

series of the realized measure:

AR-RV: f

�
RVt,t+h∆,τ

h∆

�
= ah,τ + bh,τf

�
RVt−h∆,t,τ

h∆

�
+ u

ar
t+h∆,τ , (5)

HAR-RV: f

�
RVt,t+h∆,τ

h∆

�
= ah,τ +

�

i={4,8,16,32}
bh,τ,if

�
RVt−i∆,t,τ

i∆

�
+ u

har
t+h∆,τ .(6)

The HAR-RV model is employed by AB (2010) and shown to have a superior performance.

It is noted that the data of the first 32 weeks are not used for the regression of the HAR-

RV model. To make the comparison equal, these data are not used for the regression of

the other models.

3.2 In-sample results

We estimate equations (3)–(6) using the in-sample data. The in-sample forecasting perfor-

mance is evaluated based on the adjusted R-squared coefficient, R̄2. Table 1 presents the

results.1 First, for the four-week forecasting horizon, h = 4, the R̄2 coefficients are high

at short maturities but decrease with maturity. The result that the volatility of long-term

yields is more difficult to explain than the volatility of short-term yields is consistent with

the previous results; see AB(2010), and CDGJ (2009). Also of note is a small difference

in the forecasting performance between the yield-based and RV-based regression models,

although the HAR-RV model exhibits a slightly superior performance at both short and

long maturities. Second, the increase in h has different impacts on the R̄2 coefficients

between the yield-based and RV-based models. It is generally favorable for the former

1 Extending the in sample to the full sample does not materially change the results on the relative

ranking of the models.
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but not for the latter, which is most evident at long maturities. At short maturities, the

forecasting performance remains high for both types of models.

3.3 Out-of-sample results

High performance in-sample does not necessarily lead to high performance out-of-sample.

We perform an out-of-sample analysis in two approaches. In the first approach, the pa-

rameter values of the regression models are fixed at the in-sample estimates throughout

the out-of-sample period. This is aimed at examining whether the regression models can

produce a long-run predictive relation. In the second approach, the parameters are esti-

mated every time the prediction is made in a rolling window fashion, where the size of

the data for the estimation is fixed at the same as the in-sample data. This is aimed at

examining whether the current yield curve contains useful information for the volatility

prediction. In both approaches, the out-of-sample forecasting performance is evaluated

based on the root mean squared error (RMSE).

Table 2 presents the RMSEs expressed in basis points (bps, 1bp = 0.01%) in the

fixed-parameter approach. Generally, the RV-based regression models, especially HAR-

RV, have smaller RMSEs than the yield-based regression models. This is most evident at

τ ≤ 2: the differences in the RMSE between the Y-ALL and HAR-RV models reach 12.4

bps for h = 32 at τ = 1. The performance gap tends to narrow the longer the maturity

and forecasting horizon. Nevertheless, the performance deterioration of the yield-based

models is obvious, taking much higher R̄2 coefficients of the in-sample regression into

consideration.2 The results indicate overfitting of the yield-based models to the in-sample

data. Once the parameter values are fixed, the models cannot respond to changes in the

forecasting environment.

Table 3 presents the RMSEs in the varying-parameter approach. For h = 4, the HAR-

RV model again exhibits the best performance, followed by the Y-ALL model. The RMSEs

for the Y-PART model are the largest, however, the differences in the RMSE between the

2 The high R̄2 coefficients of the yield-based models for long horizons seem to be caused by the

high persistence of both the regressor and regressand. Interest rates on the right-hand side are known

to be persistent. The realized volatility on the left-hand side becomes more persistent by extending

the horizon since more overlapping daily observations are used in successive weekly observations of the

realized volatility. For example, for h = 32, RVt,t+32∆ and RVt+∆,t+33∆ have overlapping observations

over 31 weeks.
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Y-PART and HAR-RV models do not exceed 5 bps. The extension of the forecasting

horizon is again favorable for the yield-based models. Although the high performance

of the HAR-RV model continues at τ ≤ 2, the performance of the yield-based models

becomes comparable or superior at τ = {3, 5, 10}.

Taken both the in-sample and out-of-sample results together, the current yield curve

seems to fit the volatility realized in the future. But a simple linear combination of yields

fails to produce a long-run predictive relation, which after all seems difficult to obtain with-

out information on dynamic properties of the data. The time-varying parameter approach

possibly allows a simple linear combination of yields to incorporate such information, how-

ever, it lacks consistency. This motivates us to use dynamic term structure models for

predicting the volatility.

4 Model

The existing term structure models are known to have difficulties in matching both time-

series and cross-sectional properties of the data. Therefore, the purpose of predicting

the volatility through term structure models, while maintaining the cross-sectional fit,

is originally difficult to achieve, and some breakthrough is required. In this section, we

first review the earlier work attempting to capture the volatility in order to see why

this purpose is difficult and how our solution is different. We then propose appropriate

models. Since the models do not have a closed-form expression of bond prices, we rely on

an approximation method.

4.1 A review of the volatility prediction using term structure models

A standard practice to extract volatility factors from the yield curve is to equate a term

structure model with a particular set of observed yields and to solve this equation for

latent factors including the volatility factors. In this inversion method, affine term struc-

ture models are frequently used since they provide a one-to-one correspondence between

observed and latent variables in closed-form. To be more specific on the affine models, we

use a notation introduced by Dai and Singleton (2000): Am(n) denotes an n-factor affine

term structure model in which m factors affect the instantaneous covariance matrix of the

n factors. To model stochastic volatility, m = 1 seems to be preferred as long as n ≤ 4.
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This is because the dynamics of the m factors are restricted to be in a non-negative region,

which, however, restricts the correlation structure of the factors and the market prices of

risks at the same time. In short, the more m, the more restrictions are necessary, which

deteriorates the model performance.

Nevertheless, the combination of the inversion method and the A1(n) model does not

work well. CDGJ (2009) and JK (2009) report that the volatility implied by the A1(3)

model does not behave consistently with typical volatility measures in time series. This

inconsistency indicates that it is difficult for the volatility factor to explain both the cross-

section of yield levels and the time-series of yield changes. It is an outcome of the volatility

factor playing as a cross-sectional factor, rather than a time-series factor. The increase in

n or m does not seem to be a solution, as long as the inversion method is employed with

the affine models.

A solution taken by the earlier work for reducing the tension on the volatility factor

and avoiding the resulting inconsistency is to abandon the inversion method. Bikbov and

Chernov (2011) use the extended Kalman filter to obtain the time series of the volatility

factor. Thompson (2008) uses an estimation method where the volatility factor is inte-

grated out from the likelihood function. A more extreme solution is to develop a term

structure model where the volatility factors do not appear in the cross-section of bond

prices (but do appear in the cross-section of derivative prices). Collin-Dufresne and Gold-

stein (2002) propose the so-called unspanned stochastic volatility (USV) model, which is

a special case of the Am(n) model by placing certain parameter constraints.

Our solution is different from the previous ones. We maintain the inversion method,

which has advantages of facilitating the factor identification as well as maintaining the

cross-sectional fit with a relatively small number of factors. Since the combination of the

inversion method and the existing models does not work well, we naturally abandon the

existing models. Our view is that the tension on the volatility arises because some factors

are presumed to be volatility factors. If instead such prespecification is not made, the

tension and the resulting inconsistency will be naturally avoided. Our solution is thus to

abandon the prespecification of any factor as the volatility factor. As a result, all factors

are supposed to explain the cross-section of yields as the A0(n) model. This does not seem

to be a bad idea, given a number of advantages of the A0(n) model reported by many

studies. To overcome a major drawback of the A0(n) model that the volatility is constant,
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we make the volatility of each factor level-dependent.

4.2 A baseline A0(3) model

We build our models based on the A0(3) model, and hence begin with its specification.

Among numerous specifications of the A0(3) model depending on factor rotations, we

adopt a classical one characterized by the mean-reverting behavior of the instantaneous

risk-free rate; see, e.g., Andersen and Lund (1997b), Balduzzi et al. (1996, 1998), and

Bikbov and Cherenov (2005). Let Xt = (rt θt �t)� be a three-dimensional state vector, and

the risk-neutral distribution of the instantaneous change in Xt is given by

dXt ∼ N









κ1(θt − rt) + �t

κ2(θ̄ − θt)

−κ3�t




dt , Σ dt




, (7)

where

Σ =





σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33




. (8)

In this specification, θt is presumed to be the central tendency, toward which the instanta-

neous risk-free rate rt reverts. �t is presumed to be a shock that makes the mean-reverting

behavior a bit irregular. In reality, however, we have to place the following constraint a

priori, as pointed out by CDGJ (2008) and Joslin (2006), for each process to be interpreted

as above: 0 < κ2 < κ1 < κ3. That is, θt also mean-reverts to some constant θ̄, but its

speed is slower than that of rt reverting to θt. The speed of mean reversion of �t is assume

to be the fastest, aiming at making the shock temporary.

This classical specification is beneficial in introducing the level-dependent volatility

in the next step. We can expect rt and θt to be highly correlated with short-term and

long-term yields, respectively, as is indeed the case ex post. In other words, the dynamics

of both ends of the yield curve can be more naturally described. Because at least two

of the factors are directly related to some yields and because a combination of yields has

some information useful for the volatility prediction as seen in Section 3, the introduction

of the level-dependent volatility becomes more effective within this classical specification.

To obtain the physical distribution of the instantaneous change in Xt for the purposes

of estimation and prediction, the market prices of risks, Λ(Xt), need to be specified.
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Following the essentially affine specification proposed by Duffee (2002),

Λ(Xt) = Σ−1(Λ0 + Λ1
Xt) . (9)

Then,

dXt ∼ N














κ1(θt − rt) + �t

κ2(θ̄ − θt)

−κ3�t




+





λ0
1

λ0
2

λ0
3




+





λ1
11 λ1

12 λ1
13

λ1
21 λ1

22 λ1
23

λ1
31 λ1

32 λ1
33









rt

θt

�t










dt , Σ dt




.(10)

4.3 Proposed models

Using A0(3) as a baseline model, we make the instantaneous covariance matrix of changes

in Xt time-varying. But, first of all, it must be positive definite. We wish to meet this

requirement without heavy parameterization. One possible way, similar in spirit to Fan,

Gupta, and Ritchken (2003), Han (2007), Jarrow et al. (2007), and Longstaff, Santa-Clara,

and Schwartz (2001), is to take the spectral decomposition of the covariance matrix, and

then to specify the eigenvalues as functions of the state vector while holding the corre-

sponding eigenvectors fixed. Specifically, the risk-neutral distribution of the instantaneous

change in Xt is given by

dXt ∼ N









κ1(θt − rt) + �t

κ2(θ̄ − θt)

−κ3�t




dt , Σt dt




, (11)

where Σt is decomposed as

Σt = PLtP
�
. (12)

Lt is a diagonal matrix consisting of the eigenvalues, which are functions of the state

vector:

Lt =





L1(Xt) 0 0

0 L2(Xt) 0

0 0 L3(Xt)




. (13)

P is an orthogonal matrix having the corresponding eigenvectors of unit length in its

columns. By the conditions of the orthogonality and unit length, the number of free
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parameters in P is actually three. We then parameterize P using three rotation matrices:

P =





1 0 0

0 cosϕP
3 − sinϕP

3

0 sinϕP
3 cosϕP

3









cosϕP
2 0 − sinϕP

2

0 1 0

sinϕP
2 0 cosϕP

2









cosϕP
1 − sinϕP

1 0

sinϕP
1 cosϕP

1 0

0 0 1




. (14)

This rotation is called the yaw, pitch, and roll rotation. The parameters to be estimated

are sinϕP
i (i = 1, 2, 3). For identification, we restrict ϕP

i ∈ [−π/2,π/2], so that cosϕP
i =

�
1− sin2 ϕP

i .

For Σt to be positive definite, all eigenvalues must be positive, i.e., Li(Xt) > 0 for any

Xt (i = 1, 2, 3). Taking this into consideration, we propose two models for the time-varying

eigenvalues.

The first model, abbreviated as SV-Q (Stochastic Volatility with Quadratic specifica-

tion), specifies Li(Xt) as

Li(Xt) = ci +X
�
tΓ

i
Xt (i = 1, 2, 3) , (15)

where Γi is either a positive definite matrix if ci ≥ 0 or a nonnegative definite matrix if

ci > 0. In the estimation, we impose the latter restriction on Γi and ci as this can lead

to a more parsimonious specification. For example, Γi = 0 is possible as long as the data

support. Similar to Σt, the non-negative definite matrix Γi is parameterized based on the

spectral decomposition:

Γi = Q
i
M

i
Q

i� (i = 1, 2, 3) , (16)

where

M
i =





mi
1 0 0

0 mi
2 0

0 0 mi
3




, with 0 ≤ m

i
1 ≤ m

i
2 ≤ m

i
3 , (17)

and

Q
i =





1 0 0

0 cosϕQi

3 − sinϕQi

3

0 sinϕQi

3 cosϕQi

3









cosϕQi

2 0 − sinϕQi

2

0 1 0

sinϕQi

2 0 cosϕQi

2









cosϕQi

1 − sinϕQi

1 0

sinϕQi

1 cosϕQi

1 0

0 0 1




,(18)

with ϕ
Qi

j ∈ [−π/2,π/2] (j = 1, 2, 3). It is noted that sinϕQi

j cannot be identified for some

mi
j . For example, when mi

j = 0 for all j, sinϕQi

j cannot be identified for all j. In such

cases, we set sinϕQi

j = 0.
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The second model, abbreviated as SV-E (Stochastic Volatility with Exponential spec-

ification), specifies Li(Xt) as

Li(Xt) = exp
�
ci + γ

i�
Xt

�
(i = 1, 2, 3) . (19)

No parameter restriction is required for the SV-E model. This exponential specification

that naturally avoids negative volatility is very popular in time series analysis; see, e,g.,

Andersen and Lund (1997a, b), Ball and Torous (1999), and Gallant and Tauchen (1998).

Since Σt is designed to be positive definite, the inverse matrix, Σ−1
t , is well defined.

This is extremely important for modeling the market prices of risks. That is, they can be

specified in the same way as those for the A0(3) model, i.e., equation (9) with Σ replaced by

Σt. Likewise, the physical distribution of the instantaneous change in Xt is also obtained

by substituting Σt for Σ in (10). Therefore, the entire drift parameters can virtually be

replaced with new ones in changing the risk-neutral measure to the physical measure as

in the A0(3) model. Consequently, we expect that the proposed models inherit a number

of desirable properties from the A0(3) model, which is verified in the next section.

At the same time, there are also a number of drawbacks in the proposed models.

Most critically, the models do not accommodate such factors as affecting derivative prices

but not underlying bond prices. We discuss this issue and present a possible remedy in

Section 5.1. Another drawback is that the models generate negative interest rates with

positive probability as the original A0(3) model. This problem, however, can actually be

avoided. As originally proposed by Aı̈t-Sahalia (1996), rt, starting from r0 > 0, does not

reach zero in finite time by adding a reciprocal term to the drift of rt, i.e., by considering

a−1/rt+κ1(θt−rt)+�t with a−1 > 0. If a sufficiently small value is given to a−1, say 10−8,

the impact of the reciprocal term is negligible in the observed range of the data. Therefore,

while the empirical results shown below are based on the models without the reciprocal

term, virtually identical results will be obtained using the models with the reciprocal term.

4.4 Bond price and its approximation

Let P (Xt, τ) be the price at time t of a zero-coupon bond with τ years to maturity. Then,

by the absence of arbitrage, it is given by

P (Xt, τ) = E
Q
t

�
exp

�
−

� t+τ

t
rudu

��
, (20)
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where E
Q
t [.] stands for the conditional expectation under the risk-neutral measure. The

yield to maturity of the τ -year zero-coupon bond is given by Y (Xt, τ) = − 1
τ lnP (Xt, τ).

The proposed models do not have a closed-form expression of P (Xt, τ) due to the

volatility specifications. To make the estimation of the models and the extraction of the

latent state variables feasible, we approximate P (Xt, τ) by relying on a method proposed

by Shoji (2002), and Takamizawa and Shoji (2009). This method approximates a vector of

conditional moments as a solution to the ODE. Since the zero-coupon bond price is given

as the conditional expectation, this method can be directly applied. We actually use the

third-order approximation. The outline and application of this method are presented in

Appendix B, and the accuracy of the approximation is checked in Appendix C. In short,

the method seems to work at least for pricing bonds with maturities of up to ten years

when realistic values of parameter and state vectors are provided.

4.5 Estimation method

We estimate the models with the quasi-maximum likelihood method, which is one of the

standard methods for estimating term structure models; see, e.g., CDGJ (2008), Chen and

Scott (1993), Duffee (2002), and Pearson and Sun (1994). The zero-yields with maturities

of 0.5, 1, 2, 3, 5, and 10 years are used. Among them, those with maturities of 0.5, 2,

and 10 years are assumed to be explained exactly by the models in order to back out the

latent state variables. Specifically, let Θ be a parameter vector to be estimated, and let

Υ(Xt;Θ) be a three-dimensional vector consisting of the approximate yield functions:

Υ(Xt;Θ) =
�
Ỹ (Xt, 0.5;Θ) Ỹ (Xt, 2;Θ) Ỹ (Xt, 10;Θ)

��
, (21)

where Ỹ is for clarifying the approximation. Then, Xt is obtained by solving Y
p
t =

Υ(Xt;Θ). This is done numerically, however, only a few iterations are sufficient if a good

initial value of Xt is given: it is actually the value of Xt implied by the A0(3) model.

The rest of the yields, denoted as Y e
t = (yt,1 yt,3 yt,5)�, are measured with error,

denoted as Ut = (ut,1 ut,3 ut,5)�: it is assumed to be independent from Xs for any s and

follow

Ut ∼ i.i.d.N(0, ς
2I) . (22)

The reason for assuming such a simple distribution is to let the models explain various

features of the data as much as possible.
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The joint density function at time t conditioned on time t − ∆ can be written and

developed as

f(Y p
t , Y

e
t |Y

p
t−∆, Y

e
t−∆;Θ) = f(Xt, Ut|Xt−∆;Θ)

����
dΥ(Xt;Θ)

dX �
t

����
−1

= fT (Xt|Xt−∆;Θ)fC(Ut;Θ)

����
dΥ(Xt;Θ)

dX �
t

����
−1

. (23)

The first equality is from the changes of variables from Y
p
t to Xt, by which the Jacobian

term appears, and from Y e
t to Ut. The second equality is from the independence between

Ut and Xs for any s. For both the SV-Q and SV-E models, the transition density, fT , has

no analytical expression for finite∆. We approximate it by the multivariate normal density

function, which might be justified by a relatively short interval, ∆ = 1/52. The conditional

first and second moments to be substituted are computed with the same approximation

method. It is noted that for the SV-Q model, these moments can be computed exactly

since the drift terms are linear and instantaneous (co)variances are quadratic in the state

variables. The Jacobian term is already computed in backing out the latent state variables.

On the other hand, fC is the multivariate normal density function from (22). The objective

function for estimating Θ is then

�

t

�
ln fT (Xt|Xt−∆;Θ) + ln fC(Ut;Θ)− ln

����
dΥ(Xt;Θ)

dX �
t

����

�
. (24)

5 Main Empirical Analysis

Parameter estimates and time series of implied state variables are first reported. We

then examine whether the proposed models can reproduce some important properties of

the actual data: the failure of the EHT and a hump shape of unconditional volatilities

of changes in logarithmic yields. Furthermore, we examine the predictive power of the

proposed models to the level of yields. After confirming that the proposed models have at

least a comparable performance to the A0(3) model in these dimensions, we finally proceed

to examining whether the predictive power to the volatility is improved.

5.1 Parameter estimates and implied state variables

We first report the parameter estimates for the baseline A0(3) model in Table 4. It is noted

that when the full parameters are estimated, some parameters, particularly those of the

market prices of risks, are insignificant. We set such parameters to zero, and re-estimate

18



the model until all t-values exceed 1.5 in absolute value. As a result, the instantaneous

covariance between θt and �t is zero: σ23 = 0. Also, θt alone contributes to the variation

in the market prices of risks: the first and third columns of Λ1 are all zeros. This result

is consistent with Joslin, Singleton, and Zhu (2011, Table 5), where the constraint of

rank(Λ1) = 1 is not rejected. The speed of mean reversion, captured by the estimate of

κi, is by far the lowest for θt. It is similar between rt and �t, suggesting that the three

factors are sufficient for describing the cross-section of yields. This is also suggested by a

relatively small standard deviation of the measurement errors, 6.1 bps.

Figure 2 exhibits the time series of the state variables implied by the A0(3) model.

As is indeed anticipated, the dynamics of rt and θt are very closely tracked by those of

the six-month and ten-year yields, respectively. It is so even in the out-of-sample period,

implying that there is no structural break between the samples. �t ranges between −0.07

and 0.04, and looks more volatile. This is confirmed by the estimate of σ33 shown in Table

4, which is much larger than the estimates of σ11 and σ22. In sum, the A0(3) model is

shown to be appropriately specified in that the ex post dynamics of the state variables are

consistent with the ex ante roles.

Tables 5 and 6 present the parameter estimates for the SV-Q and SV-E models, re-

spectively. Similar to the estimation of the A0(3) model, insignificant parameters are set

to zero in the final estimation.3 It is also noted that only the same parameters of Λ(Xt)

as those for the A0(3) model are estimated, which is aimed at distinguishing the models

solely by the specification of the covariance matrix. We notice that the estimates of the

risk-neutral drift are very similar across the three models. For both the SV-Q and SV-E

models, the estimate of sinϕP
2 alone is significant in the eigenvector matrix P . As a result,

the instantaneous covariance matrix for these models is

Σt =





L1(Xt) cos2 ϕP
2 + L3(Xt) sin2 ϕP

2 0 {L1(Xt)− L3(Xt)} sinϕP
2 cosϕP

2

0 L2(Xt) 0

{L1(Xt)− L3(Xt)} sinϕP
2 cosϕP

2 0 L1(Xt) sin2 ϕP
2 + L3(Xt) cos2 ϕP

2




.(25)

It turns out that L2(Xt) is the instantaneous variance of θt. In addition, because sinϕP
2 <

cosϕP
2 , L1(Xt) is more closely related to the instantaneous variance of rt, whereas L3(Xt)

is to the instantaneous variance of �t. Among the instantaneous covariances, only that

3 As exceptions, for the SV-Q model, c1 is set at a very small number, 10−8, due to the constraint of

c1 > 0, and sinϕQ2

3 = − sinϕQ2

2 .

19



between rt and �t is significant.

The estimates of ς, the standard deviation of the measurement errors, for the SV-Q

and SV-E models are 6.1 bps, which are little changed from that for the A0(3) model.

The result reconfirms that as far as the description of the cross-section of yields, the

A0(3) model has already done a sufficient job. Time-varying volatility does not seem to

be effective in this dimension. It is, however, in the time-series dimension of the data.

Indeed, compared with the A0(3) model, the log-likelihood value for the SV-Q model is

increased by 152 with additional 10 parameters and that for the SV-E model is increased

by 95 with additional 7 parameters.

Figure 3 exhibits the time series of the state variables implied by the SV-Q (left

panels) and SV-E (right panels) models. For each state variable, two implied series are

visually indistinguishable. Furthermore, they are almost identical to that implied by the

A0(3) model shown in Figure 2. The result also indicates that the specification of the

instantaneous covariance matrix little affects the behavior of the state variables extracted

from the cross-section of yields, given the identical specification of the risk-neutral drift.

In other words, it is the risk-neutral drift that matters with the identification of the state

variables.

But if this is indeed the case, the following question naturally arises: can a state

variable be identified from the cross-section of yields that appears in the instantaneous

covariance matrix but not in the risk-neutral drift? If not, this state variable would

virtually act as an unspanned factor. Indeed, a similar argument is made by Joslin (2010)

using affine term structure models. 4 In addition, in CDGJ (2009, p.51), the sufficient

conditions to obtain the A1(4) USV model from the A1(4) model are presented, one of

which indicates that the coefficient of a volatility factor in the risk-neutral drift term of a

conditionally Gaussian factor should be very small. In fact, their Table 2A shows that the

estimate of this coefficient for the A1(4) USV model is −0.260, which is in sharp contrast

4 Specifically, the convexity arising from the Jensen’s inequality can be defined as

CV (Xt, τ) ≡
1
τ

� t+τ

t

EQ
t [r(Xu)]du− Y (Xt, τ) .

But Joslin (2010) showed that both the level and variation of CV (Xt, τ) are small even at τ = 10. This

indicates that Y (Xt, τ) is mostly determined by
� t+τ

t
EQ

t [r(Xu)]du/τ and that this relation is stable over

time. Then, if the volatility factors are not included in EQ
t [r(Xu)], they cannot have an impact on Y (Xt, τ)

large enough to be backed out from Y (Xt, τ) with some precision.
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with the corresponding estimate of −809.5 for the A1(4) model obtained by the inversion

method. Other parameters in the risk-neutral drift terms do not exhibit such a dramatic

change. The result indicates that by this restriction alone the volatility factor becomes

nearly, if not completely, unspanned. A similar result is reported by Thompson (2008,

Tables 3 and 4). Taken together, the introduction of a nearly unspanned factor does not

seem as difficult as previously thought: simply exclude a factor from the risk-neutral drift

terms.

5.2 Ability of the models to replicate real properties of the data

We have seen many similarities between the A0(3) and proposed models. We then expect

that the advantages of the A0(3) model are inherited into the SV-Q and SV-E models.

We verify this expectation. Specifically, we examine whether these models can replicate

the failure of the EHT and the hump shape of unconditional volatilities of changes in

logarithmic yields.

5.2.1 Failure of the EHT

Following Campbell and Shiller (1991) but using a slightly different notation, we consider

the following regression model:

yt+τ1,τ2−τ1 − yt,τ2 = φ
0
τ2 + φ

1
τ2

τ1

τ2 − τ1
(yt,τ2 − yt,τ1) + ut+τ1 , (26)

where τ1 and τ2 are measured in years and τ2/τ1 is integer. Since we use weekly data,

we set τ1 = ∆ (= 1/52). But, this requires the one-week yield. Instead of generating the

one-week yield from the original LIBOR and swap curves by extrapolation, we use as a

proxy the six-month yield. This simplification might be justified because our purpose is

to examine whether the proposed models can replicate an empirical pattern rather than

to test the EHT rigorously. Also, we replace yt+∆,τ2−∆ on the left-hand side of equation

(26) with yt+∆,τ2 for convenience. We consider τ2 = {1, 2, 3, 5, 10}.

It is know that the actual estimates of φ1
τ2 tend to be negative, and more so with

increasing τ2, contrary to the EHT that φ1
τ2 = 1 holds for all τ2. We estimate equation

(26) using both actual and simulated data. For each model, we simulate 1,000 sets of data

with the same sample size as the actual in-sample data. Precisely, the initial realization

is drawn randomly from the actual data. The subsequent realizations are generated from

21



the physical distribution of changes in Xt given by (10): for the SV-Q and SV-E models,

Σ is replaced by Σt. For the SV-Q and SV-E models, since analytical expressions of

the distribution over a finite interval are unavailable, we use a discretized version of the

distribution, where dt is replaced by ∆t = 1/1, 000. We then obtain 1,000 estimates of

φ1
τ2 , and record the average, and the 5th and 95th percentiles of these estimates.

The left panels of Figure 4 exhibit the actual (the solid line) and model-implied (the

marked line) estimates of φ1
τ2 together with the 90% confidence band (the dotted line).

While the extent of the failure of the EHT is weaker for the simulated data than for the

actual data, all three models have a similar pattern, indicating that the proposed models

can regenerate the failure at least as well as the A0(3) model.

5.2.2 Hump shape of unconditional volatilities

The right panels of Figure 4 exhibit the actual (the solid line) and model-implied (the

marked line) estimates of unconditional volatilities (annualized standard deviations) of

changes in logarithmic yields with the 90% confidence band (the dotted line). Again, all

models can regenerate a hump shape that is close to the actual one.

5.3 Predictive power to the level of yields

Duffee (2002) shows that the essentially A0(3) model having the market prices of risks

given by equation (9) has a superior predictive power to the level of yields than the other

essentially Am(3) models with m > 0. We examine whether the proposed models have

at least a comparable ability in this dimension. To compute the conditional expectation

of the h-week ahead τ -maturity yield for the proposed models, Et[Ỹ (Xt+h∆, τ)], we also

employ the approximation method of conditional moments: the details of the application

are provided in Appendix B and the accuracy analysis is in Appendix C. To match the

forecasting horizons with those for the volatility, we also consider h = {4, 8, 16, 32}.

Table 7 presents the in-sample RMSEs in basis points, where the prediction error

is defined as the difference between predicted and realized yields. As a benchmark, we

provide the results for random walk (RW), whose forecast is the current yield for any h.

The forecasts of the three term structure models are generally better than those of RW,

except for h = {8, 16} at τ = 1. Among the term structure models, the performance is

similar, though the RMSEs for the SV-Q model tend to be slightly larger.
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Table 8 presents the out-of-sample RMSEs in basis points. Generally, the three term

structure models have smaller RMSEs than RW. At τ = 10, however, RW is comparable

for h ≤ 16 and superior for h = 32 to the term structure models. The result indicates

the difficulty of predicting the ten-year yield in terms of both the level and volatility.

Among the term structure models, while the proposed models are slightly better at short

maturities, the performance is generally similar, confirming that the ability of the proposed

models to predict the level of yields is maintained.

5.4 Predictive power to the volatility of yields

We consider several competing models. First, we select the A0(3) and A1(3) models.

Since, given h and τ , the A0(3) model produces a constant forecast independently from

the current state, it serves as a benchmark, as does RW for the level prediction. As for

the specification of the A1(3) model, we select one proposed by CDGJ (2008, p.762). The

A1(3) model is estimated in the same way as the other term structure models.

Second, we consider a time-series model applied to the same weekly data. We select

the GARCH(1,1) model. Although there are a number of variants of the GARCH model,

it is selected because more complicated models do not necessary beat the simplest one in

the out-of-sample period; see Hansen and Lunde (2005). The model is fitted to each yield,

yt,τ :

yt+∆,τ = α+ βyt,τ +
�
Vt+∆,τ zt+∆,τ , (27)

Vt+∆,τ = ω0 + ω1Vt,τz
2
t,τ + ω2Vt,τ , (28)

where it is assumed for simplicity that zt,τ ∼ i.i.d.N(0, 1). The h-week ahead conditional

variance, vart[yt+h∆,τ ], is obtained by iteration, an explanation of which is provided in

Appendix D.

Third, we consider time-series models applied directly to the daily data. We select the

HAR-RV model presented in Section 3 and the mixed data sampling (MIDAS) approach

developed by Ghysels et al. (2005, 2006). The MIDAS regression in this paper is as

follows:

MIDAS:

�
RVt,t+h∆,τ

h∆
= ah,τ

+bh,τ

��nt
i=1(yt−L∆(i−1)/nt,τ − yt−L∆i/nt,τ )

2wh,τ (i)

(L∆/nt)
+ u

m
t+h∆,τ , (29)
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where following Ghysels et al. (2005, equation (3)), the weighting function, wh,τ (i), is

given by

wh,τ (i) =
exp{wh,τ,1i+ wh,τ,2i

2}
�nt

k=1 exp{wh,τ,1k + wh,τ,2k
2} , (30)

and nt stands for the number of daily observations over the past L weeks: usually nt =

L × 5. We set L = 32 to make the amount of information equal between HAR-RV and

MIDAS. The difference between the two is in the weighting structure to past observations.

The predictive power to the volatility is evaluated by the RMSE criterion using both

the in-sample and out-of-sample data. The RMSE for the term structure and GARCH

models is computed based on the following equations:

�
RVt,t+h∆,τ

h∆
= forecastt,h,τ + u

1
t+h∆,τ , (31)

�
RVt,t+h∆,τ

h∆
= ah,τ + bh,τforecastt,h,τ + u

2
t+h∆,τ , (32)

where forecastt,h,τ is a model forecast at time t for the h-week ahead volatility of the

τ -maturity yield. Some explanation is needed as to how to compute forecastt,h,τ for

the proposed models. First, while we assumed that the yields not used for backing out

the factors are measured with error in estimating the models, we omit the variance of

this error in computing the conditional variance of these yields, as it is a small constant.

That is, we assume here that yt,τ = Ỹ (Xt, τ) for all τ . Second, since forecastt,h,τ =
�
vart[Ỹ (Xt, τ)] has no closed-form expression, we employ the approximation method of

conditional moments again; see Appendices B and C for the application and the accuracy,

respectively.

For the HAR-RV and MIDAS regressions, the RMSE is computed from equations (6)

and (29), respectively.

As in Section 3, the out-of-sample predictive power is evaluated in both the fixed- and

varying-parameter approaches. The out-of-sample RMSE in the fixed-parameter approach

is computed with the parameter values held fixed at the in-sample estimates throughout

the out-of-sample period. The out-of-sample RMSE in the varying-parameter approach

is computed as follows. First, for the term structure and GARCH models, the model

parameters are fixed at the in-sample estimates. The parameters that vary every time the

prediction is made are (ah,τ , bh,τ ) in equation (32). Second, for the MIDAS regression,

(wh,τ,1, wh,τ,2) in equation (30) are fixed at the in-sample estimates, while (ah,τ , bh,τ ) in
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equation (29) are re-estimated. Finally, for the HAR-RV regression (6), all parameters are

re-estimated as before.

It is noted that the above comparison scheme is challenging to the term structure

models. There is an information gap between the term structure and GARCH models.

While each yield is used for estimating the GARCH model, only three yields, the six-

month, two-year, and ten-year yields, are used for estimating time-series properties of the

term structure models. The information gap widens further against the HAR-RV and

MIDAS regressions, which are constructed directly from the realized volatility.

5.4.1 In-sample results

To obtain an intuition about the model performance, we first look at Figures 5–8, where

the time series of the four-week ahead forecast of the volatility (annualized standard de-

viation) of the six-month, two-year, and ten-year yields are displayed together with the

corresponding realized measure. In Figure 5, the GARCH forecast tracks the realized mea-

sure well with the correlation coefficients being around 0.6, though it tends to overestimate

the level of the volatility of the six-month yield and underestimate the variation of the

volatility of the ten-year yield. In Figure 6, the A1(3) forecast fluctuates little. Besides,

the correlations between the predicted and realized series are low: for the ten-year yield,

it is −0.19. The results are consistent with those reported by CDGJ (2008, 2009), and JK

(2009). In Figure 7, the SV-Q forecast is apparently better than the A1(3) forecast with

the correlation coefficients being around 0.5, yet it does not truck the realized measure

as closely as the GARCH forecast. More specifically, the forecast is occasionally wrong

especially during 2002–04, however, it can remarkably capture the sharp rise and fall in the

realized measure observed during 2008–09 even though this period is out-of-sample. At

τ = 10, while the correlation remains reasonably high, the variability of the model forecast

is much smaller than that of the realized measure. Finally, in Figure 8, the SV-E forecast

is also improved from the A1(3) forecast, but it does not track the realized measure as

closely as the GARCH forecast, either. Compared with the SV-Q forecast, the correlation

at τ = 0.5 is slightly higher but those at τ = {2, 10} are lower. Still, the SV-E forecast at

τ = 10 appears to track the trend of the realized measure better than the SV-Q forecast.

More generally, the SV-E forecast appears to be more persistent. It produces neither large

deviations nor intensive variations. In fact, the serial correlations for the SV-E forecast
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are all around 0.99, which are larger than those for the SV-Q forecast, around 0.95.

Having these figures in mind, we compare the in-sample model performance. Table 9

presents the RMSEs in basis points. For the term structure and GARCH models, the name

alone indicates the results based on equation (31), whereas the name “+ Reg” indicates

the results based on equation (32). Note that there is no A0(3) + Reg, as forecastt,h,τ

is constant. In reporting the results, we focus on the comparison first without then with

the forecasting regression (32).

For the four-week forecasting horizon, h = 4, the proposed models predict the volatility

better than the affine models, except at τ = 10, where the benchmark A0(3) model

has a smaller RMSE. Compared with the GARCH model, the RMSEs for the proposed

models are larger, except for the SV-E model at τ = 0.5. The proposed models are

also outperformed by the HAR-RV and MIDAS regressions especially at short maturities

τ ≤ 1. However, the performance gap narrows with increasing τ . Even with the forecasting

regression (32), the RMSEs for the proposed models are larger than those for the HAR-RV

and MIDAS regressions. But the differences in the RMSE are reduced to around 1 bp

at middle to long maturities. The performance of the GARCH + Reg model is almost

indistinguishable from that of the HAR-RV and MIDAS regressions.

By extending the forecasting horizon, the relative performance of the proposed models

improves. While at τ ≤ 1, the HAR-RV and MIDAS regressions continuously exhibit

a high performance, the performance of the proposed models becomes comparable for

h = {16, 32} at τ = {2, 3, 5}. With the forecasting regression, this holds at all τ . In fact,

the RMSEs for the SV-Q + Reg model are the smallest for h = {8, 16, 32} at τ = {2, 3},

and those for the SV-E + Reg model are the smallest for h = {16, 32} at τ = {5, 10}.

5.4.2 Out-of-sample results

We compare the out-of-sample model performance first in the fixed-parameter approach,

where the parameter values are fixed at the in-sample estimates throughout the out-of-

sample period. Table 10 presents the RMSEs in basis points. For h = 4, the SV-E model

outperforms the affine models for all τ , whereas the SV-Q model fails to outperform the

A1(3) model at τ ≤ 1. However, the SV-Q model improves with increasing τ . In fact, it has

the smallest RMSE at τ = 10 among all models. Compared with the GARCH model, the

proposed models have a comparable or superior performance at both ends of the maturity
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spectrum but are worse at in-between maturities. They are outperformed by the HAR-RV

and MIDAS regressions overwhelmingly at short maturities but become comparable at

τ = 10. With the forecasting regression, the performance of the proposed models becomes

better at τ ≤ 1 but worse at τ = {3, 5, 10} than it is without the forecasting regression.

Since the decrease in the RMSE at τ ≤ 1 is insufficient, the proposed models with the

forecasting regression are outperformed by the HAR-RV and MIDAS regressions at all τ .

By extending the horizon, while the HAR-RV and MIDAS regressions continuously

exhibit a superior performance at τ ≤ 1, the relative performance of the proposed models

improves at middle to long maturities, as is the case for the in-sample prediction. For

h = 8, the SV-Q model is comparable or superior to the HAR-RV and MIDAS regressions

at τ = {3, 5, 10}, although it is worse than the A1(3) model at τ ≤ 1. The SV-E model

also outperform the high frequency regressions at τ = 10. This pattern is maintained,

but somewhat strengthened, for h = {16, 32}. As a result, the SV-Q model exhibits

a comparable performance in both sample periods to the time-series models for h =

{8, 16, 32} at τ = {3, 5, 10}. The forecasting regression again increases the out-of-sample

RMSEs for the proposed models at middle to long maturities. But the degree of increase

is relatively minor. As a result, the SV-Q + Reg model is comparable in both sample

periods to the time-series models for h = {16, 32} at τ = {2, 3, 5, 10}. Likewise, the SV-E

+ Reg model is comparable for h = {16, 32} at τ = 10.

Next, we compare the out-of-sample model performance in the varying-parameter ap-

proach, where the regression parameters are re-estimated every time the prediction is

made. Table 11 presents the RMSEs in basis points. For h = 4, the SV-Q model out-

performs the A1(3) model at all τ , whereas the SV-E model fails to do so at τ ≤ 1. The

proposed models are outperformed by the time-series models, however. In contrast with

the previous performance criteria, the relative performance of the proposed models does

not much improve by extending the horizon. This is partly because the performance of

the HAR-RV regression remains high due to the advantage of more varying parameters: it

has five varying parameters, not two like the other models. Still, there are cases in which

the differences in the RMSE between the SV-Q and HAR-RV models are within 2 bps: for

h = 8 at τ = {3, 10} and for h = {16, 32} at τ = 3. Compared with the GARCH model,

the proposed models are outperformed but catch up at τ = 10.
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5.4.3 A possible economic reasoning for the results

Why is the predictive power of the time-series models especially high for short forecasting

horizons at short maturities and why does the predictive power of the proposed models

relatively improve for long forecasting horizons at middle to long maturities?

The short-term yields are closely related to policy interest rates controlled by the

central bank. Usually, the policy rates do not change frequently in a short period of

time. Even if they do, they rather move in an anticipated direction. Therefore, the

short-term yields can be more easily predicted, in terms of both the level and volatility,

using information on the past state of the economy. The time-series models are good at

exploiting such information, and thus exhibit a superior forecasting performance for short

horizons at short maturities.

On the other hand, the role of the expectation about the future state of the economy

increases not only in making longer-term forecasts but also in pricing longer-term bonds.

By the specifications of the covariance matrix, Σt, the volatility forecast of the proposed

models depends on the current yield curve, which by nature contains forward-looking

information. Thus, an adequately specified term structure model has potential to have a

relatively high predictive power for long forecasting horizons at middle to long maturities.

These results suggest that a combination of the two different types of forecasts, one

from the time-series models and the other from the term structure models, may further

improve the predictive power. This possibility is explored in the next subsection. Also of

interest is whether the non-arbitrage constraint, given specifically by equation (20), has

some contribution to the predictive power, beyond the specifications of Σt. This question

is addressed in Section 5.6.

5.5 Combined forecasts

We make a combined forecast based on the HAR-RV model, which has a simple structure

and exhibits a superior performance especially at short maturities:

�
RVt,t+h∆,τ

h∆
= ah,τ +

�

i={4,8,16,32}
bh,τ,i

�
RVt−i∆,t,τ

i∆
+ ch,τforecastt,h,τ + u

c
t+h∆,τ , (33)

where forecastt,h,τ is taken from the term structure and GARCH models. Then, we

examine the sign, magnitude, and significance of the estimate of ch,τ using the in-sample
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data. Furthermore, we examine the extent to which the combined forecast reduces the

out-of-sample RMSE relative to the HAR-RV forecast alone.

Table 12 presents the estimates of ch,τ in equation (33) together with the standard

errors in parenthesis computed using the method of Newey and West (1987) with 32 lags.

First, for the four-week forecasting horizon, h = 4, the slope estimates for the SV-Q fore-

cast lie in a relatively narrow range from 0.36 to 0.47, which are all significantly different

from zero but not from 0.5. Those for the SV-E forecast are also all significant with the

range of estimates somewhat wider. The GARCH forecast has significant estimates except

at τ = {0.5, 2}. The result indicates that incremental information of the GARCH forecast

is relatively small. This is not surprising given the similarity between the HAR-RV and

GARCH models in the way of using time-series information to make forecasts. The slope

estimates for the A1(3) forecast are significant only at τ ≤ 1. Though insignificant, the

estimates at τ = {5, 10} are negative. A similar pattern is observed for longer horizons,

with a notable exception that the estimates for the proposed models at τ = 10 tend to be

less significant.

Table 13 presents the % changes in the out-of-sample RMSE in the fixed-parameter

approach. Of particular attention is the success of the HAR-RV + SV-Q forecast. This

combined forecast reduces the out-of-sample RMSEs at middle to long maturities for all h,

confirming an incremental value of the SV-Q forecast. Adding the GARCH forecast also

reduces the RMSEs at middle to long maturities, however, the magnitude of reduction

is less than that achieved by the SV-Q forecast. On the other hand, adding the SV-E

forecast worsens the out-of-sample performance except at τ = 10. Adding the A1(3)

forecast generally deteriorates the performance with the increase in the RMSE reaching

30% for h = 32 at τ = 1.

Table 14 presents the % changes in the out-of-sample RMSE in the varying-parameter

approach. The overall picture agrees with that in Table 13. Again, the performance of

the HAR-RV + SV-Q forecast is remarkable. In all cases except for h = 32 at τ = 0.5, it

reduces the RMSEs by up to 16%. Adding the SV-E forecast, however, leads to the worst

out-of-sample performance in this criterion: the RMSEs increase in all cases.

Taken together, the combined forecast based on the HAR-RV model works especially

at middle to long maturities, as expected. But the choice of the other model matters. In

our sample, the SV-Q model is an appropriate one. The GARCH model also contributes
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to the reduction in the RMSE, but not as much as the SV-Q model.

5.6 Is the non-arbitrage relevant with the volatility prediction?

Recently, Joslin et al. (2011) have proposed a canonical representation of the Gaussian

term structure model in which linear combinations of observed yields serve as underlying

factors. Since there is no need to back out the factors from the cross-section of yields, the

physical drift terms of the factors, which involve the prediction of the level of factors, are

free of any cross-sectional constraint including the non-arbitrage. In predicting the level of

the other yields not used for making factors, some cross-sectional constraint relating the

factors to these yields is required. But Duffee (2011) shows that a simple linear regression

is sufficient for constructing this relation, so that the more complicated non-arbitrage

condition is unnecessary for the level prediction of both yields used and not used for

making factors.

The above studies have shed new light on the relation between the role of non-arbitrage

and the level prediction of yields, using the Gaussian term structure model. However, less

clear is whether this relation also holds for the prediction of the volatility that changes

stochastically. Since the covariance matrix, Σt, is invariant to measure changes, it is

related to both time-series and cross-sectional properties of the yield curve once the non-

arbitrage is imposed, though the relation to the latter may be weak as argued in Section

5.1. Therefore, the estimate of Σt with the non-arbitrage might differ from that without the

non-arbitrage obtained using time-series properties of the data alone, which would produce

the difference in the volatility prediction between with and without the non-arbitrage.5

To examine the impact of non-arbitrage on the volatility prediction, we first clarify the

role of non-arbitrage in this particular context:

(i) description of the cross-sectional relation between yields,

(ii) estimation of Σt,

(iii) identification of factors.

According to these roles, we control the degree of impact in the following three stages.

In the first stage, we take (ii) and (iii) as given, and remove (i). Specifically, we use the

5 This is the case for options data on stocks and currencies; see, e.g., Bakshi, Cao, and Chen (1996),

and Bates (1996, 2000).
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time-series of the state vector, Xt, extracted through the SV-Q and SV-E models with

the parameter values fixed at the estimates presented in Tables 5 and 6, respectively. The

cross-sectional relation is described by a linear regression as

yt,τ = δ0,τ + δ
�
1,τXt + u

cross
t,τ . (34)

The coefficients, (δ0,τ δ�1,τ ), are estimated by OLS using the in-sample data. These esti-

mates are fixed throughout the out-of-sample period to maintain the consistency with the

previous analysis in Section 5.4. But it is noted that even though they are changed every

time the prediction is made in the out-of-sample analysis, the results are not changed

much, indicating that the cross-sectional relation is stable over the whole sample period.

In computing the h-week ahead conditional variance, we omit the variance of ucrosst,τ as in

Section 5.4:

vart[yt+h∆,τ ] = δ
�
1,τvart[Xt+h∆]δ1,τ , (35)

It is noted that although the constant term in equation (34), δ0,τ , does not appear in

equation (35), it may affect the volatility prediction by affecting the estimate of δ1,τ .

But this impact is negligible. The results of the volatility prediction with δ0,τ excluded

preliminarily from equation (34) little change from those with δ0,τ included, which are

presented below. Equations (34) and (35) are common also in the next two stages.

In the second stage, we take only (iii) as given, and remove (i) and (ii). The physical

distribution of changes in Xt with the same SV-Q and SV-E specifications of Σt is esti-

mated using the in-sample data. These estimated parameters are fixed throughout the

out-of-sample period.

In the last stage, we remove all of (i)–(iii). Thus, the underlying factors need to be

identified first. To avoid arbitrariness, we use the conventional level (levt), slope (slot),

and curvature (curt) factors, which are given by




levt

slot

curt




=





0 0 1

−1 0 1

−1 2 −1









yt,0.5

yt,2

yt,10




. (36)

The rest of the process is the same as the second stage. It is noted that since Xt is

composed of the observed yields with τ = {0.5, 2, 10}, there is no residual in equation

(34) for these maturities. Also, though the same SV-Q and SV-E specifications are used,

significant parameters remaining in Σt are different because different factors are used.
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Table 15 presents the in-sample RMSEs in basis point, where panels A and B present

the results based on equations (31) and (32), respectively. The rows labeled SV-Q and

SV-E show the original results, taken from Table 9, with the non-arbitrage imposed. NCi

(i = 1, 2, 3) indicates “No Constraint”, beyond the linear regression, on the cross-sectional

relation with the number corresponding to the stage where the non-arbitrage is involved.

We limit our attention to h = 4 since the results for other forecasting horizons are basically

the same: the imposition of non-arbitrage seems irrelevant to the forecasting horizon.

First, in panel A, the RMSEs for NC1 are little changed from the original ones for both

the SV-Q and SV-E specifications, indicating that once the factor and parameter values

are provided, there is virtually no difference between using the non-arbitrage condition and

the linear regression. Also, the result implies that although the SV-Q and SV-E models

are outside a class of affine models, the cross-sectional relation between the factors and

yields is close to linear. The RMSEs for NC2 are somewhat changed from the original ones,

however, the differences do not seem large. The result is attributed to similar estimates of

Σt between with and without the non-arbitrage, indicating that Σt is estimated mostly by

time-series properties of the data even though the non-arbitrage is imposed. The impact

of non-arbitrage, if any, seems neutral for the volatility forecasting performance: it is

favorable for SV-Q but not for SV-E. The RMSEs for NC3 are not much changed although

some reduction is observed for the SV-E specification. These results together indicate that

the key to the volatility forecasting performance is neither the imposition of non-arbitrage

nor the choice of factors associated with this imposition, but the specification of Σt.

Next, looking at panel B, we notice that there is no difference at any stage, with a

minor exception for NC3 of the SV-Q specification at τ = {0.5, 1}, where the RMSEs are

a bit increased. Thus, the volatility forecasting regression further decreases the impact of

non-arbitrage to a level where it is almost negligible. It is not surprising that these in-

sample results are inherited into the out-of-sample results, so they are omitted for brevity.

In sum, the non-arbitrage condition has little effect on the volatility prediction, as is the

case for the level prediction shown by Duffee (2011).

6 Concluding remarks

Andersen and Benzoni (2010, p.644) pointed out, after rejecting the affine spanning con-

ditions associated with the yield variance, that “further extensions to the term structure
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modeling framework are warranted.” This paper has shown one such extension. We im-

proved the predictive power of term structure models with respect to the volatility. Based

on the three-factor Gaussian model, we made the instantaneous covariance matrix of

the factors level-dependent. Specifically, the eigenvalues of this matrix are specified by

quadratic (model SV-Q) and exponential (model SV-E) functions of the factors. The pro-

posed models indeed predicted the volatility more accurately than the affine modes. The

key to the success is not to identify the volatility factors directly from the yield curve,

but to specify the volatility functions with the yield curve factors and estimate them

using time-series properties of the data. The non-arbitrage constraint on cross-sectional

properties of the data is of little relevance to this success, however.

Compared with the time-series models, GARCH(1,1) and high frequency regressions,

the volatility forecasting performance of the proposed models is low for the four-week

forecasting horizon especially at short maturities. However, by extending the horizons up

to 32 weeks, the relative performance of the proposed models increases. In fact, there are

some cases at middle to long maturities in which the performance is comparable or even

superior to that of the time-series models in both the in-sample and out-of-sample periods.

We further considered combined forecasts, where a forecast of the proposed models was

added to the high-frequency regression model as an explanatory variable. The predictive

power indeed increased when the forecast of the SV-Q model was included, which, however,

did not hold for the SV-E model.

Level-dependent volatility works from a statistical perspective. But less clear is whether

it does from an economic perspective. One approach to measure the economic significance

of level-dependent volatility, as developed by Fleming, Kirby, and Ostdiek (2001), is to

construct bond portfolios based on model-implied first and second moments of returns and

to examine their profitability. In this analysis, the predictability of the covariances, which

is not a main focus of this paper, has a crucial role. It may be the case that adequate mod-

els differ between statistical and economic perspectives. Another question is, as argued

in Section 5.1, whether volatility-specific factors that do not appear in the risk-neutral

drift terms can further increase the predictive power to the time series of interest rates, or

contribute to the description of the cross-section of interest-rate option prices. Addressing

these questions is left for future research.
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Appendix A: Impact of omitting the mean reversion on the

realized volatility

We consider a CIR-type square-root process for each yield, yt,τ :

dyt,τ = (α+ βyt,τ )dt+ σ
√
yt,τdWt , (37)

whereWt is Brownian motion in the physical measure. The variance of yt+h∆,τ conditioned

on yt,τ is

vart[yt+h∆,τ ;α,β,σ] =
σ2

β
(e2βh∆ − e

βh∆)yt,τ +
ασ2

2β2
(eβh∆ − 1)2 . (38)

By setting β = 0, it is simplified as

vart[yτ,t+h∆;σ] = σ
2
h∆yt,τ . (39)

Then, we compute the time series of % difference between the two conditional standard

deviations:

100

��
vart[yt+h∆,τ ;σ]

vart[yt+h∆,τ ;α,β,σ]
− 1

�

.

We evaluate the impact of omitting the mean reversion by mean and standard deviation

of the above series. The parameters are estimated using the in-sample data on each

yield. The quasi-maximum likelihood method is employed, where the conditional mean

and variance are substituted into the normal density function.

In panel A of Table A, the parameter estimates (standard errors) are presented. The

speed of mean reversion tends to increase the longer the maturity, as the estimates of β

become more negative. However, none of them is significant. In panel B of Table A, the

means (standard deviations) of the time series of % difference are presented: in computing

vart[yt+h∆,τ ;σ], we do not re-estimate σ but simply use the estimates shown in panel A.

For h = 32, the mean difference reaches nearly 15% at τ = 10. However, due to the

insignificant estimates of β, the actual impact of omitting the mean reversion is not as

serious as it appears.
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Appendix B: An approximation method of conditional mo-

ments and its application to the pricing of bonds

B1. Outline of the method

The method is originally developed by Shoji (2002) and applied to the pricing of bonds

by Takamizawa and Shoji (2009). The method generally allows for the computation of up

to n-th conditional moments, if they exist, for a d-dimensional diffusion process. To ease

the explanation, we limit our attention to the case of (n, d) = (2, 2), i.e., the conditional

first and second moments of a two-dimensional diffusion process. As seen below, n can be

considered as the order of approximation.

Let Xt = (xt,1 xt,2)� be a two-dimensional diffusion process, which evolves according

to the following stochastic differential equation (SDE):

dxt,i = fi(Xt)dt+ ξi(Xt)
�
dWt (i = 1, 2) , (40)

where Wt is two-dimensional Brownian motion, and the drift and diffusion functions, fi

and ξi (i = 1, 2), satisfy certain technical conditions for the solution to equation (40) to

exist for an arbitrary X0.

Let Ψs,t be a vector consisting of the first and second moments of an increment of Xt

conditioned on time s < t:

Ψ�
s,t = Es

�
xt,1 − xs,1 xt,2 − xs,2 (xt,1 − xs,1)

2 (xt,2 − xs,2)
2 (xt,1 − xs,1)(xt,2 − xs,2)

�
.

The goal is to obtain an approximation of Ψs,t, which will turn out to be the solution to

an ODE.

By integrating equation (40) and taking the conditional expectation,

Es[xt,i − xs,i] = Es

�� t

s
fi(Xu)du

�
. (41)

By applying the Taylor expansion to fi(Xu) around Xs up to the second order

fi(Xu) = fi(Xs)

+f
(1,0)
i (Xs)(xu,1 − xs,1) + f

(0,1)
i (Xs)(xu,2 − xs,2) +

1

2
f
(2,0)
i (Xs)(xu,1 − xs,1)

2

+
1

2
f
(0,2)
i (Xs)(xu,2 − xs,2)

2 + f
(1,1)
i (Xs)(xu,1 − xs,1)(xu,2 − xs,2) + ei , (42)
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where f (k,l) = ∂k+lf
∂xk

1∂x
l
2
, and ei is a residual term. By substituting equation (42) into

equation (41) and expressing the resulting equation in a vector form

Es[xt,i − xs,i] = fi(t− s)

+
�
f
(1,0)
i f

(0,1)
i

1

2
f
(2,0)
i

1

2
f
(0,2)
i f

(1,1)
i

�� t

s
Ψs,udu+Ri , (43)

where Xs is omitted for notational convenience, and Ri = Es[ei].

Next, by applying the Ito formula to (xt,1 − xs,1)2 and taking the conditional expecta-

tion,

Es[(xt,1 − xs,1)
2] = Es

�� t

s
{2f1(Xu)(xu,1 − xs,1) + g11(Xu)}du

�
, (44)

where g11 = ξ�1ξ1. By applying the Taylor expansion to f1(Xu) and g11(Xu) around Xs

up to the first and second orders, respectively, the integrand of equation (44) becomes

2f1(Xu)(xu,1 − xs,1) + g11(Xu)

= g11(Xs) + {2f1(Xs) + g
(1,0)
11 (Xs)}(xu,1 − xs,1) + g

(0,1)
11 (Xs)(xu,2 − xs,2)

+{2f (1,0)
1 (Xs) +

1

2
g
(2,0)
11 (Xs)}(xu,1 − xs,1)

2 +
1

2
g
(0,2)
11 (Xs)(xu,2 − xs,2)

2

+{2f (0,1)
1 (Xs) + g

(1,1)
11 (Xs)}(xu,1 − xs,1)(xu,2 − xs,2) + e11 , (45)

where g(k,l) is defined analogously with f (k,l), and e11 is a residual term. By substituting

equation (45) into equation (44),

Es[(xt,1 − xs,1)
2] = g11(t− s)

+
�
2f1 + g

(1,0)
11 g

(0,1)
11 2f (1,0)

1 +
1

2
g
(2,0)
11

1

2
g
(0,2)
11 2f (0,1)

1 + g
(1,1)
11

�

×
� t

s
Ψs,udu+R11 , (46)

where R11 = Es[e11]. A similar manipulation is applied to Es[(xt,2−xs,2)2] and Es[(xt,1−

xs,1)(xt,2 − xs,2)]. Expressing the resulting equations together in a vector form leads to

Ψs,t = A(Xs)
� t

s
Ψs,udu+ b(Xs)(t− s) +R , (47)

where

A =





f
(1,0)
1 f

(0,1)
1

1
2f

(2,0)
1

1
2f

(0,2)
1 f

(1,1)
1

f
(1,0)
2 f

(0,1)
2

1
2f

(2,0)
2

1
2f

(0,2)
2 f

(1,1)
2

2f1 + g
(1,0)
11 g

(0,1)
11 2f (1,0)

1 + 1
2g

(2,0)
11

1
2g

(0,2)
11 2f (0,1)

1 + g
(1,1)
11

g
(1,0)
22 2f2 + g

(0,1)
22

1
2g

(2,0)
22 2f (0,1)

2 + 1
2g

(0,2)
22 2f (1,0)

2 + g
(1,1)
22

f2 + g
(1,0)
12 f1 + g

(0,1)
12 f

(1,0)
2 + 1

2g
(2,0)
12 f

(0,1)
1 + 1

2g
(0,2)
12 f

(1,0)
1 + f

(0,1)
2 + g

(1,1)
12





,
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b = (f1 f2 g11 g22 g12)
�
,

R = (R1 R2 R11 R22 R12)
�
.

Equation (47) can be solved as

Ψs,t =
� t

s
e
A(Xs)(t−u)

b(Xs)du+ R̂ . (48)

If, in addition, A is invertible, we obtain

Ψs,t = A
−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (49)

It is noted that equations (47)–(49) hold for any (n, d) with modification to A(Xs) and

b(Xs). In general, Ψs,t consists of
�n+d

n

�
−1 = (n+d)!/(n!d!)−1 elements when up to n-th

conditional moments for a d-dimensional diffusion process are computed. Correspondingly,

up to n-th derivatives of fi and gij (i, j = 1, ..., d) are taken to compute the elements

of A(Xs). Omitting the residual vector, R or R̂, leads to the approximation formula.

According to Shoji (2002), both R and R̂ have order of O((t− s)(n+3)/2). Thus, n can be

considered as the order of approximation. In pricing bonds, we consider n = 3.

It is also noted that R contains the conditional expectation of derivatives of fi higher

than the first order and derivatives of gij higher than the second order. Then, if fi and

gij are linear and quadratic in Xs, respectively, there is no residual term. In other words,

the conditional moments computed by the formula are exact. Even in such a case, the use

of this formula may be beneficial when the derivation of closed-form conditional moments

is demanding.

B2. Application of the method

To apply the approximation method to the pricing of bonds, define

zs,t = exp
�
−

� t

s
r(Xu)du

�
, (50)

and the price of a discount bond at time t maturing at time T is equal to the conditional

first moment of zt,T under the risk-neutral measure. This (actually E
Q
t [zt,T − zt,t]) is

computed as one of the elements of the moment vector, Ψt(T ). Specifically, we first

extend a state vector as X̂t = (X �
t zs,t)

�, where Xt is a d-dimensional diffusion process and
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zs,t is treated as the (d+ 1)-th process. By the Ito formula,

dzs,t = −r(Xt)zs,tdt , zs,s = 1 , (51)

and we have

fd+1(X̂t) = −r(Xt)zs,t , (52)

gi d+1(X̂t) = 0 (i = 1, ..., d+ 1) . (53)

Then, the elements of A(X̂s) can be readily computed by taking appropriate derivatives

of fi (the risk-neutral drift functions here) and gij (i, j = 1, ..., d+1). The accuracy of the

approximation to E
Q
t [zt,T ] is investigated in the next appendix.

The approximation method is also applied to the computation of conditional first and

second moments of a model-implied yield, Es[Ỹ (Xt, τ)] and Es[Ỹ (Xt, τ)2]. Similar to the

case in zs,t, we first extend a state vector as X̂t = (X �
t Ỹ (Xt, τ))�, and then derive the

SDE for Ỹ (Xt, τ):

dỸ (Xt, τ) = fd+1(Xt, τ)dt+ ξ
�
d+1(Xt, τ)dWt , (54)

where

fd+1(Xt, τ) =
∂Ỹ (Xt, τ)

∂X �
t

µt +
1

2
tr

�
∂2Ỹ (Xt, τ)

∂Xt∂X
�
t

Σt

�

, (55)

ξd+1(Xt, τ) = Σ0.5�
t

∂Ỹ (Xt, τ)

∂Xt
, (56)

and where Wt is d-dimensional Brownian motion, and µt and Σt are the physical drift

vector and the instantaneous covariance matrix of dXt, respectively. gi d+1 is obtained by

ξ�iξd+1 (i = 1, ..., d+ 1).

In computing A(X̂s), the derivatives of fd+1 and gi d+1 are required. But fd+1 and gi d+1

already contain the derivatives of Ỹ (Xt, τ) up to the second order, which complicates the

calculation. To avoid the tedious calculation, the derivatives of Ỹ (Xt, τ) higher than the

second order are omitted, while the derivatives of µt and Σt are taken as many times

as necessary. The accuracy of the approximation to Et[Ỹ (Xt+h∆, τ)n] (n = 1, 2) is also

investigated in the next appendix.
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Appendix C: Accuracy of the approximation

The purpose of this appendix is to let the cost of using the approximation be known. By

construction of the method, the accuracy becomes worse the longer the time interval, t−s.

Here, the interval is up to ten years for pricing bonds, which raises concern with the appli-

cation of this method. To check the accuracy of the approximation, we consider two cases

with and without a closed-form solution for bond prices. This is aimed at examining how

close the approximate solution is to the closed-form and numerical solutions, respectively.

C1. Comparison to the closed-form solution

We treat A0(3) as the true model. We divide the analysis into three steps according to the

degrees of approximation involved. Let Θ0 be the parameter vector of the A0(3) model,

the elements of which are set at the estimates presented in Table 4 (also re-exhibited in

Table C2). The extracted state vector can then be expressed as X(Y p
t ;Θ0).

In the first step, we examine the impact of the approximation on the pricing of bonds

alone. Specifically, both Θ0 and X(Y p
t ;Θ0) are given as input for the approximation

method. Then, we compare

Y (X(Y p
t ;Θ0), τ ;Θ0) v.s. Ỹ (X(Y p

t ;Θ0), τ ;Θ0) (τ = {0.5, 1, 2, 3, 5, 10}) ,

where Y (·) and Ỹ (·) stand for the closed-form and approximate functions, respectively.

In the second step, we examine the impact of the approximation on the extraction

of state variables as well as on the pricing of bonds. Here, only Θ0 is given. Using the

approximation, the state vector is first backed out, which is denoted as X̃(Y p
t ;Θ0), and

the rest of the yields are computed. Then, we compare:

X(Y p
t ;Θ0) v.s. X̃(Y p

t ;Θ0) ,

Y (X(Y p
t ;Θ0), τ ;Θ0) v.s. Ỹ (X̃(Y p

t ;Θ0), τ ;Θ0) (τ = {1, 3, 5}) .

Note that at τ = {0.5, 2, 10}, both Y (Xt, τ ;Θ0) and Ỹ (X̃t, τ ;Θ0) are equal to the observed

yields by construction of the inversion method.

In the last step, we examine the impact of the approximation on the estimation of

model parameters as well as on the pricing of bonds and the extraction of state variables.

Here, no prior information on the true values of the parameter and state vectors is given.

Using the approximation, the parameter vector of the A0(3) model is first estimated;
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denote it as Θ̃0. Next, the state vector is backed out; denote it as X̃(Y p
t ; Θ̃0). Finally, the

rest of the yields are computed. Then, we compare:

Θ0 v.s. Θ̃0

X(Y p
t ;Θ0) v.s. X̃(Y p

t ; Θ̃0) ,

Y (X(Y p
t ;Θ0), τ ;Θ0) v.s. Ỹ (X̃(Y p

t ; Θ̃0), τ ; Θ̃0) (τ = {1, 3, 5}) .

It is noted that the accuracy in the third step, which is a more realistic setup, is not

examined by Takamizawa and Shoji (2009).

Apart from the parameter vector, the key input for these comparisons is Y p
t . We use

the actual data on Y
p
t . To condense the analysis, we pick up nine observations from the

entire sample in the following way. First, Y
p
t is transformed to the conventional level

(levt), slope (slot), and curvature (curt) factors by equation (36). Then, we choose three

dates in which levt takes the minimum, median, or maximum value. Likewise, the three

dates are chosen for each of the other proxies, leading to nine dates in total. In this way,

the accuracy of the approximation is evaluated at not only the usual times but also the

unusual times.

Table C1 presents the differences, expressed in basis points, between the approximate

and true yields or state variables. Panel A presents the results for the first step compar-

ison, where the true values of the parameter and state vectors are given as input for the

approximation. For maturities of up to five years, the approximation errors are negligibly

small at all states. Even for the ten-year maturity, the error exceeds 2 bps only at the

maximum-spread state. The values of the curvature, on the other hand, little affects the

accuracy.

Panel B of Table C1 presents the results for the second-step comparison, where only

the true value of the parameter vector is given. A systematic pattern is found in the

approximation errors for the state vector. Specifically, both r and θ are undervalued,

which is compensated by the overvaluation of �. The difficulty of the approximation arises

again at the maximum-spread state. On the other hand, the approximation errors for the

remaining yields are small.

Panel C of Table C1 presents the results for the third-step comparison, where no

prior information is given. Before discussing the results, we first look at Table C2, where

the parameter estimates (standard errors) obtained by the approximation method are

presented. Overall, the estimates do not seem to differ much from the corresponding true
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values. Except for θ̄, the differences in absolute value are smaller than the standard errors.

Now, looking back at panel C of Table C1, we find, nevertheless, that the magnitude of

the approximation errors generally increases. This is the reality. Here, an error pattern is

less clear, but it is seen that r tends to be overvalued and θ tends to undervalued. Also,

the difficulty of the approximation is not limited to the maximum-spread state. In fact,

the largest errors in absolute value for r and θ appear at the minimum-curvature state and

the minimum-level state, respectively. The remaining yields are accurately computed.

C2. Comparison to the numerical solution

We employ the Monte Carlo (MC) method to evaluate the accuracy. The models we use

are SV-Q and SV-E. Let Θi (i = {Q,E}) be the true parameter vectors, the elements of

which are set at the estimates presented in Tables 5 and 6, respectively. Further, the state

vector is extracted by the approximation method, not by the MC method; denote it as

X̃(Y p
t ;Θi). Then, we compare

Y (X̃(Y p
t ;Θi), τ ;Θi) v.s. Ỹ (X̃(Y p

t ;Θi), τ ;Θi) (τ = {0.5, 1, 2, 3, 5, 10}) .

In the MC simulations, {Xs}t+τ
t is generated from (11) (the risk-neutral distribution),

where dt is replaced by ∆t. We set ∆t = 1/1, 000, an interval corresponding roughly

to four observations per day. The number of repetition is set at 10,000 with antithetic

variates.

Table C3 presents the differences, expressed in basis points, between the approximate

and MC yields. Generally, the error pattern is similar to that for the first-step comparison

to the closed-form solution. For maturities of up to five years, the approximation errors

are within 1 bp at all states for both models. For the ten-year yield, the approximation

error exceeds 2 bps only at the maximum-spread state. However, this comparison does not

take the approximation errors in both the parameter and state vectors into consideration.

In reality, therefore, the approximation errors for the resulting yields would be larger, as

seen in the third-step comparison to the closed-form solution.
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C3. Accuracy to conditional first and second moments of a model-implied

yield

Based on the SV-Q and SV-E models, we again employ the MC method to evaluate the

accuracy at the nine states. In the MC simulations, {Xs}t+h∆
t is generated from (10)

(the physical distribution), where Σ is replaced by Σt and dt by ∆t (= 1/1, 000). For

simplicity, once Xt+h∆ is obtained, a model-implied τ -maturity yield (and its squared

value) is computed by the approximation method. This procedure is repeated 10,000

times with antithetic variates. Then, we compare

Et[Ỹ (Xt+h∆, τ)] v.s. E
ap
t [Ỹ (Xt+h∆, τ)] ,

�
vart[Ỹ (Xt+h∆, τ)]/h∆ v.s.

�
varapt [Ỹ (Xt+h∆, τ)]/h∆ ,

where the superscript “ap” is for clarifying the approximation. We set h = 32 as this is

the longest horizon we consider and thus the accuracy is the worst.

Table C4 presents the differences, expressed in basis points, in the conditional mean.

The errors in absolute value are all within 1 bp for both models. Table C5 presents the

differences, expressed in basis points, in the annualized conditional standard deviation.

Although the accuracy to the second moment becomes worse than that to the first moment,

the errors in absolute value are all within 2 bps.

It is noted that the more rigorous analysis of the accuracy requires to compare

Et[Y (Xt+h∆, τ)
n] v.s. E

ap
t [Ỹ (Xt+h∆, τ)

n] (n = 1, 2) .

That is, no approximation is involved in the former in computing the τ -maturity yield at

time t + h∆: but this analysis is computationally very demanding. In reality, therefore,

the approximation errors would be larger than presented in Tables C4 and C5.
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Appendix D: Computation of the conditional variance for the

GARCH (1,1) model

The variance of yt+∆,τ conditioned on time t is simply Vt+∆,τ , which is observed at time

t. The variance of yt+k∆,τ (k = 2, ..., h) conditioned on time t is computed iteratively

as follows. In equation (27), by substituting t + (k − 1)∆ for t and taking the variance

conditioned on time t,

vart[yt+k∆,τ ] = vart[α+ βyt+(k−1)∆,τ +
�
Vt+k∆,τzt+k∆,τ ]

= β
2vart[yt+(k−1)∆,τ ] + vart[

�
Vt+k∆,τzt+k∆,τ ]

+2β covt[yt+(k−1)∆,τ ,

�
Vt+k∆,τzt+k∆,τ ]

= β
2vart[yt+(k−1)∆,τ ] + Et[Vt+k∆] (k = 2, ..., h) . (57)

On the other hand, in equation (28), by substituting t + (k − 1)∆ for t and taking the

expectation conditioned on time t,

Et[Vt+k∆] = Et[ω0 + ω1Vt+(k−1)∆,τz
2
t+(k−1)∆,τ + ω2Vt+(k−1)∆,τ ]

= ω0 + (ω1 + ω2)Et[Vt+(k−1)∆,τ ] (k = 2, ..., h) . (58)

Then, vart[yt+h∆,τ ] is obtained by iteratively solving equations (57) and (58) starting from

vart[yt+∆,τ ] = Vt+∆,τ .
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Maturity 0.5 1 2 3 5 10

h = 4

Y-PART 0.34 0.30 0.17 0.13 0.13 0.07

Y-ALL 0.36 0.33 0.23 0.16 0.15 0.08

AR-RV 0.39 0.35 0.22 0.13 0.14 0.12

HAR-RV 0.43 0.39 0.24 0.14 0.15 0.12

h = 8

Y-PART 0.39 0.35 0.23 0.18 0.17 0.10

Y-ALL 0.42 0.40 0.29 0.21 0.21 0.11

AR-RV 0.40 0.40 0.21 0.11 0.13 0.07

HAR-RV 0.45 0.42 0.23 0.12 0.14 0.09

h = 16

Y-PART 0.42 0.39 0.28 0.24 0.22 0.16

Y-ALL 0.45 0.44 0.35 0.27 0.25 0.17

AR-RV 0.40 0.34 0.15 0.06 0.06 0.00

HAR-RV 0.44 0.40 0.22 0.13 0.12 0.07

h = 32

Y-PART 0.40 0.40 0.31 0.31 0.27 0.28

Y-ALL 0.43 0.44 0.40 0.35 0.32 0.29

AR-RV 0.33 0.33 0.17 0.11 0.06 0.03

HAR-RV 0.38 0.37 0.20 0.12 0.07 0.03

Table 1: Adjusted R2
coefficients for the volatility forecasting regression

The regression models are given by equations (3)–(6), where f(x) =
√
x and h = {4, 8, 16, 32}.

The best and the second best results in each column of each panel are displayed in bold

and italic, respectively. The in-sample data from January 4, 1991 to April 9, 2003 are

used for the estimation.
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Maturity 0.5 1 2 3 5 10

h = 4

Y-PART 45.0 41.9 42.9 41.4 39.9 40.6

Y-ALL 40.4 38.3 42.2 39.8 39.7 39.7

AR-RV 31.5 28.6 32.2 34.0 34.3 35.5

HAR-RV 30.7 27.3 30.5 32.2 32.4 35.7

h = 8

Y-PART 42.4 39.3 39.8 38.6 37.4 37.7

Y-ALL 36.6 34.7 38.0 35.3 35.5 36.0

AR-RV 30.7 25.0 29.1 32.2 32.0 35.2

HAR-RV 29.3 24.4 28.1 30.6 31.2 35.3

h = 16

Y-PART 40.3 37.5 37.7 37.0 36.5 36.3

Y-ALL 35.1 33.8 36.3 33.7 34.1 34.1

AR-RV 29.4 23.8 30.1 33.6 34.4 38.3

HAR-RV 27.7 23.2 28.4 30.6 31.7 34.9

h = 32

Y-PART 37.3 35.1 36.6 36.7 35.4 34.5

Y-ALL 35.1 34.8 35.9 34.4 33.2 33.0

AR-RV 25.6 23.4 29.9 31.5 32.7 31.5

HAR-RV 25.6 22.3 28.4 30.6 32.0 31.4

Table 2: Out-of-sample RMSEs in the fixed-parameter approach

Out-of-sample forecasts are generated from the regression equations (3)–(6), where f(x) =√
x and h = {4, 8, 16, 32}. The parameters are fixed at the in-sample estimates throughout

the out-of-sample period from April 16, 2003 to May 27, 2009. The best and the second

best results in each column of each panel are displayed in bold and italic, respectively.
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Maturity 0.5 1 2 3 5 10

h = 4

Y-PART 34.3 32.4 34.8 33.9 32.3 33.5

Y-ALL 31.4 30.6 34.0 32.9 30.7 28.8

AR-RV 32.0 29.1 31.7 32.3 31.8 33.1

HAR-RV 31.1 27.7 30.1 30.9 29.9 32.2

h = 8

Y-PART 32.1 29.3 31.3 30.4 28.4 29.2

Y-ALL 29.3 27.7 30.6 29.2 26.3 23.7

AR-RV 31.0 25.3 27.9 29.4 28.2 31.7

HAR-RV 29.8 24.9 27.5 28.8 27.2 30.0

h = 16

Y-PART 31.2 27.7 29.8 29.0 27.4 28.0

Y-ALL 28.2 26.0 29.4 28.3 25.9 23.3

AR-RV 29.8 24.3 29.0 30.6 29.5 33.4

HAR-RV 27.5 23.6 27.8 28.9 26.7 28.6

h = 32

Y-PART 29.4 25.8 28.0 28.0 27.4 27.0

Y-ALL 27.6 24.9 27.6 27.2 26.0 23.5

AR-RV 25.9 23.8 28.5 29.3 27.6 27.3

HAR-RV 25.9 22.2 26.3 27.5 26.0 27.0

Table 3: Out-of-sample RMSEs in the varying-parameter approach

Out-of-sample forecasts are generated from the regression equations (3)–(6), where f(x) =√
x and h = {4, 8, 16, 32}. The parameters are re-estimated in a rolling-window fashion

with the sample size fixed at the same as the in-sample data. The best and the second

best results in each column of each panel are displayed in bold and italic, respectively.

The out-of-sample period is from April 16, 2003 to May 27, 2009.
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Parameter / Index i = 1 i = 2 i = 3

κi 0.947 (0.087) 0.017 (0.002) 0.957 (0.090)

θ̄ 0.146 (0.008)

σ1i × 104 0.722 (0.030) 0.095 (0.035) −0.985 (0.115)

σ2i × 104 1.220 (0.063) 0.000

σ3i × 104 8.036 (0.438)

λ0
i 0.000 0.030 (0.019) −0.013 (0.008)

λ1
1i 0.000 −0.195 (0.037) 0.000

λ1
2i 0.000 −0.514 (0.280) 0.000

λ1
3i 0.000 0.000 0.000

ς × 102 0.061 (0.001)

LogL 22263

Table 4: Parameter estimates (standard errors) for the A0(3) model

The risk-neutral and physical distributions of the instantaneous change in Xt for the A0(3)

model are given by (7) and (10), respectively. ς is the standard deviation of the measure-

ment errors, ut,τ = yt,τ − Ỹ (Xt, τ) with τ = {1, 3, 5}. LogL stands for the maximum

log-likelihood value. Standard errors in parenthesis are computed by the outer product

of the gradient vector of the log-likelihood function. The in-sample data from January 4,

1991 to April 9, 2003 are used for the estimation.
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Parameter / Index i = 1 i = 2 i = 3

κi 1.034 (0.073) 0.019 (0.002) 0.917 (0.063)

θ̄ 0.137 (0.007)

sinϕP
i 0.000 0.126 (0.010) 0.000

ci × 103 1e−5 0.111 (0.008) 0.149 (0.107)

m1
i 0.000 0.022 (0.002) 0.260 (0.034)

sinϕQ1

i 0.250 (0.047) 0.631 (0.021) −0.705 (0.042)

m2
i 0.000 0.000 0.097 (0.054)

sinϕQ2

i 0.000 0.547 (0.105) −0.547

m3
i 0.000 0.228 (0.061) 2.153 (0.627)

sinϕQ3

i 0.273 (0.134) 0.551 (0.058) −0.616 (0.087)

λ0
i 0.000 0.020 (0.020) −0.011 (0.008)

λ1
1i 0.000 −0.150 (0.031) 0.000

λ1
2i 0.000 −0.357 (0.301) 0.000

λ1
3i 0.000 0.000 0.000

ς × 102 0.061 (0.001)

LogL 22415

Table 5: Parameter estimates (standard errors) for the SV-Q model

The risk-neutral and physical distributions of the instantaneous change in Xt for the SV-Q

model are given by (7) and (10), respectively, with Σ replaced by Σt. Σt is decomposed

as Σt = PLtP �, where Lt is the diagonal eigenvalue matrix, and P is the orthogonal

eigenvector matrix parameterized in equation (14). The i-th diagonal element of Lt is

specified as Li(Xt) = ci+X �
tΓ

iXt (i = 1, 2, 3), where ci > 0 and Γi is a non-negative definite

matrix. Γi is also parameterized based on the spectral decomposition as Γi = QiM iQi�

(i = 1, 2, 3), where M i is the diagonal eigenvalue matrix with its elements satisfying

0 ≤ mi
1 ≤ mi

2 ≤ mi
3, and Qi is the orthogonal eigenvector matrix parameterized in

equation (18). ς is the standard deviation of the measurement errors, ut,τ = yt,τ−Ỹ (Xt, τ)

with τ = {1, 3, 5}. LogL stands for the maximum log-likelihood value. Standard errors in

parenthesis are computed by the outer product of the gradient vector of the log-likelihood

function. The in-sample data from January 4, 1991 to April 9, 2003 are used for the

estimation.

52



Parameter / Index i = 1 i = 2 i = 3

κi 0.955 (0.070) 0.023 (0.003) 0.981 (0.078)

θ̄ 0.118 (0.006)

sinϕP
i 0.000 0.123 (0.013) 0.000

ci −12.942 (0.263) −8.693 (0.214) −8.574 (0.379)

γ1i 10.538 (2.235) 35.110 (3.476) −17.267 (2.431)

γ2i −8.828 (3.697) 0.000 −10.551 (2.943)

γ3i −13.489 (4.665) 29.079 (4.460) −9.665 (2.733)

λ0
i 0.000 0.036 (0.022) −0.014 (0.008)

λ1
1i 0.000 −0.171 (0.038) 0.000

λ1
2i 0.000 −0.595 (0.318) 0.000

λ1
3i 0.000 0.000 0.000

ς × 102 0.061 (0.001)

LogL 22358

Table 6: Parameter estimates (standard errors) for the SV-E model

The risk-neutral and physical distributions of the instantaneous change in Xt for the SV-E

model are given by (7) and (10), respectively, with Σ replaced by Σt. Σt is decomposed as

Σt = PLtP �, where Lt is the diagonal eigenvalue matrix, and P is the orthogonal eigenvec-

tor matrix parameterized in equation (14). The i-th diagonal element of Lt is specified as

Li(Xt) = exp{ci + γi �Xt} (i = 1, 2, 3). ς is the standard deviation of the measurement er-

rors, ut,τ = yt,τ − Ỹ (Xt, τ) with τ = {1, 3, 5}. LogL stands for the maximum log-likelihood

value. Standard errors in parenthesis are computed by the outer product of the gradient

vector of the log-likelihood function. The in-sample data from January 4, 1991 to April

9, 2003 are used for the estimation.
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Maturity 0.5 1 2 3 5 10

h = 4

RW 23.1 26.8 30.3 30.1 28.4 26.1

A0(3) 22.0 28.2 30.1 29.7 28.1 25.7

SV-Q 22.1 28.7 30.2 29.8 28.2 25.8

SV-E 22.0 28.3 30.1 29.7 28.1 25.7

h = 8

RW 37.8 42.9 47.7 46.9 43.6 37.8

A0(3) 35.9 44.0 47.4 46.1 42.5 36.9

SV-Q 36.2 44.8 47.6 46.3 42.7 37.0

SV-E 35.9 44.1 47.4 46.1 42.5 36.9

h = 16

RW 63.4 69.2 74.3 72.1 66.2 55.6

A0(3) 60.7 70.5 73.5 70.0 63.2 52.8

SV-Q 61.4 71.8 74.2 70.7 63.7 53.2

SV-E 60.6 70.6 73.4 69.9 63.1 52.8

h = 32

RW 107.0 109.9 110.8 105.4 96.1 82.4

A0(3) 102.7 109.0 106.1 98.4 86.9 73.3

SV-Q 104.3 111.6 108.3 100.6 89.0 74.8

SV-E 102.4 108.8 105.7 97.8 86.3 72.9

Table 7: In-sample RMSEs for the level prediction

Root mean squared errors (RMSEs) for the in-sample prediction of the h-week ahead yields

are presented in basis points with h = {4, 8, 16, 32}. RW represents random walk, whose

forecast is the current yield for any h. The in-sample period is from January 4, 1991 to

April 9, 2003.
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Maturity 0.5 1 2 3 5 10

h = 4

RW 28.9 28.2 29.4 31.0 32.4 31.5

A0(3) 25.2 27.8 28.2 28.8 30.7 31.5

SV-Q 24.8 27.6 28.2 29.0 30.8 31.4

SV-E 24.9 27.4 28.2 28.9 30.9 31.7

h = 8

RW 44.5 42.7 45.1 46.5 47.3 45.5

A0(3) 35.9 37.2 42.1 42.2 43.7 45.4

SV-Q 35.0 36.9 42.2 42.5 44.0 45.3

SV-E 35.1 36.4 42.0 42.4 44.1 45.9

h = 16

RW 70.3 66.6 70.1 68.4 63.8 58.2

A0(3) 55.3 55.4 63.7 61.2 59.1 59.0

SV-Q 53.4 54.6 64.0 61.6 59.1 58.2

SV-E 53.6 53.9 63.7 61.7 60.1 60.6

h = 32

RW 112.3 104.8 102.6 93.8 81.0 69.4

A0(3) 91.1 85.0 88.8 82.9 78.2 77.2

SV-Q 88.0 83.6 89.4 83.5 77.3 73.8

SV-E 88.0 82.6 89.1 84.6 81.4 81.8

Table 8: Out-of-sample RMSEs for the level prediction

Root mean squared errors (RMSEs) for the out-of-sample prediction of the h-week ahead

yields are presented in basis points with h = {4, 8, 16, 32}. RW represents random walk,

whose forecast is the current yield for any h. The out-of-sample period is from April 16,

2003 to May 27, 2009.
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Maturity 0.5 1 2 3 5 10

h = 4

A0(3) 39.2 39.8 34.8 34.6 28.9 26.6

A1(3) 36.1 37.0 33.4 34.1 29.4 28.0

SV-Q 33.7 35.0 32.8 33.9 28.3 26.9

SV-E 32.0 33.8 32.8 33.6 28.4 27.8

GARCH 33.1 31.4 31.1 32.3 27.0 25.0

A1(3) + Reg 29.8 34.1 33.1 33.9 28.7 26.4

SV-Q + Reg 28.7 32.5 31.1 32.4 27.5 26.3

SV-E + Reg 27.8 31.9 31.5 32.3 27.1 25.8

GARCH + Reg 27.1 29.1 30.5 31.9 26.6 24.7

HAR-RV 25.6 29.1 29.8 31.8 26.4 24.9

MIDAS 25.6 28.8 29.5 31.6 26.1 24.7

h = 8

A0(3) 37.5 37.4 30.6 29.5 24.2 22.1

A1(3) 34.0 33.9 28.8 28.8 24.9 23.7

SV-Q 32.2 32.0 27.7 27.9 23.4 22.4

SV-E 30.1 30.8 28.0 28.1 23.7 23.2

GARCH 31.6 27.8 26.9 27.5 22.9 20.9

A1(3) + Reg 27.0 30.6 28.7 28.8 24.2 21.9

SV-Q + Reg 25.9 28.7 26.0 26.7 22.7 21.8

SV-E + Reg 24.7 28.1 26.7 26.9 22.4 21.2

GARCH + Reg 24.6 25.5 26.3 27.1 22.5 20.9

HAR-RV 23.3 26.1 26.2 27.4 22.4 21.0

MIDAS 23.5 25.9 26.0 27.2 22.1 20.8

Table 9: In-sample RMSEs for the volatility prediction

56



Maturity 0.5 1 2 3 5 10

h = 16

A0(3) 37.8 36.2 26.9 24.8 20.5 18.6

A1(3) 33.1 31.4 24.9 24.3 21.6 20.7

SV-Q 34.1 31.4 24.1 22.5 19.6 18.7

SV-E 31.1 29.7 24.0 22.9 20.1 19.8

GARCH 32.0 26.6 24.0 23.4 19.9 17.7

A1(3) + Reg 24.2 27.3 24.7 24.0 20.4 17.5

SV-Q + Reg 23.7 25.5 21.9 21.5 19.0 17.7

SV-E + Reg 22.2 25.2 22.6 21.8 18.5 17.1

GARCH + Reg 22.8 23.9 23.4 22.9 19.3 17.4

HAR-RV 21.6 24.4 23.1 23.0 19.1 17.2

MIDAS 21.6 24.4 23.4 23.4 19.0 17.3

h = 32

A0(3) 42.2 36.2 22.8 20.0 17.7 17.2

A1(3) 34.3 28.8 21.1 21.3 20.5 20.1

SV-Q 41.8 33.9 21.5 17.9 15.9 15.5

SV-E 37.8 31.1 20.6 18.7 18.2 19.1

GARCH 35.0 24.9 20.0 19.3 17.5 16.4

A1(3) + Reg 21.4 23.8 20.5 18.8 16.2 12.5

SV-Q + Reg 21.7 22.5 18.3 16.8 15.0 12.9

SV-E + Reg 20.6 22.7 18.8 17.0 14.7 12.4

GARCH + Reg 20.9 21.5 19.7 18.2 15.6 12.9

HAR-RV 20.2 22.4 19.8 18.5 15.6 12.7

MIDAS 20.1 22.3 19.7 18.6 15.7 13.0

Table 9 (continued): In-sample RMSEs for the volatility prediction

Root mean squared errors (RMSEs) for the in-sample prediction of the h-week ahead

yield volatilities (annualized standard deviations) are presented in basis points with h =

{4, 8, 16, 32}. For the term structure and GARCH models, the name alone indicates the

results based on equation (31), whereas the name “+ Reg” indicates the results based on

equation (32). The best and the second best results in each column of each panel are

displayed in bold and italic, respectively. The in-sample period is from January 4, 1991

to April 9, 2003.
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Maturity 0.5 1 2 3 5 10

h = 4

A0(3) 50.0 42.3 42.9 43.4 44.3 44.3

A1(3) 43.9 37.1 44.2 46.7 50.5 49.9

SV-Q 47.5 42.5 37.7 34.5 32.5 34.1

SV-E 39.9 35.9 37.9 37.2 35.7 35.5

GARCH 46.7 34.3 31.5 31.0 30.0 34.7

A1(3) + Reg 51.5 47.5 46.8 46.1 45.3 43.6

SV-Q + Reg 36.1 33.8 34.3 34.6 35.9 39.8

SV-E + Reg 39.3 35.7 38.8 39.1 39.3 40.2

GARCH + Reg 34.1 30.7 31.8 32.3 32.5 34.3

HAR-RV 30.7 27.3 30.5 32.2 32.4 35.7

MIDAS 30.3 26.8 30.3 32.5 31.8 34.5

h = 8

A0(3) 48.8 40.8 40.4 41.1 42.3 42.2

A1(3) 42.0 34.6 42.1 45.2 49.4 48.6

SV-Q 46.8 40.5 33.5 30.5 28.8 30.8

SV-E 39.0 34.1 35.2 34.9 33.5 32.6

GARCH 47.2 31.9 27.7 27.9 27.6 33.8

A1(3) + Reg 49.4 45.8 44.7 44.2 42.9 40.9

SV-Q + Reg 34.6 31.0 30.6 30.9 32.6 37.0

SV-E + Reg 37.9 33.5 36.1 36.5 36.8 37.5

GARCH + Reg 33.6 28.5 28.6 29.9 31.1 33.8

HAR-RV 29.3 24.4 28.1 30.6 31.2 35.3

MIDAS 29.6 24.3 28.4 31.6 30.9 34.0

Table 10: Out-of-sample RMSEs for the volatility prediction in the fixed-

parameter approach
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Maturity 0.5 1 2 3 5 10

h = 16

A0(3) 49.8 41.2 38.8 39.5 41.3 40.5

A1(3) 40.9 32.9 40.8 44.5 48.8 47.2

SV-Q 50.8 42.4 32.1 29.4 29.1 30.7

SV-E 40.6 34.5 33.9 34.0 33.3 31.6

GARCH 49.2 30.9 27.3 28.2 29.4 35.2

A1(3) + Reg 46.6 44.0 43.0 42.7 41.2 38.6

SV-Q + Reg 35.1 30.6 29.5 29.9 32.4 36.3

SV-E + Reg 37.2 32.4 34.5 34.9 35.5 35.4

GARCH + Reg 33.6 27.0 28.7 30.3 32.5 35.0

HAR-RV 27.7 23.2 28.4 30.6 31.7 34.9

MIDAS 28.1 23.3 29.0 32.7 32.7 35.3

h = 32

A0(3) 54.6 43.6 37.2 37.6 39.4 36.6

A1(3) 41.4 31.7 39.2 43.4 47.1 42.9

SV-Q 56.7 44.8 30.4 28.7 30.2 30.0

SV-E 46.2 37.5 33.6 34.1 34.0 30.3

GARCH 39.4 25.9 26.5 29.1 32.2 35.1

A1(3) + Reg 42.0 40.5 40.4 40.1 37.9 34.6

SV-Q + Reg 34.2 29.4 29.2 30.1 32.1 32.8

SV-E + Reg 35.8 31.5 33.7 34.0 33.8 31.6

GARCH + Reg 27.9 22.4 28.3 29.8 32.5 33.3

HAR-RV 25.6 22.3 28.4 30.6 32.0 31.4

MIDAS 25.4 22.1 28.5 31.0 32.7 32.7

Table 10 (continued): Out-of-sample RMSEs for the volatility prediction in

the fixed-parameter approach

Root mean squared errors (RMSEs) for the out-of-sample prediction of the h-week ahead

yield volatilities (annualized standard deviations) are presented in basis points with h =

{4, 8, 16, 32}. For the term structure and GARCH models, the name alone indicates the

results based on equation (31), whereas the name “+ Reg” indicates the results based on

equation (32). All parameters are fixed at the in-sample estimates throughout the out-of-

sample period from April 16, 2003 to May 27, 2009. The best and the second best results

in each column of each panel are displayed in bold and italic, respectively.
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Maturity 0.5 1 2 3 5 10

h = 4

A1(3) + Reg 38.8 35.4 42.1 43.2 43.4 42.9

SV-Q + Reg 37.1 33.2 34.5 34.1 33.6 34.4

SV-E + Reg 39.8 36.4 38.1 37.7 35.6 36.6

GARCH + Reg 32.3 28.9 31.7 31.4 30.3 32.8

HAR-RV 31.1 27.7 30.1 30.9 29.9 32.2

MIDAS 30.6 27.1 29.9 30.7 29.7 32.2

h = 8

A1(3) + Reg 36.9 32.9 39.9 41.1 41.2 40.3

SV-Q + Reg 35.9 30.6 30.9 30.5 29.4 30.2

SV-E + Reg 38.4 34.3 35.3 35.0 32.7 33.5

GARCH + Reg 31.5 26.5 28.2 28.3 27.7 31.3

HAR-RV 29.8 24.9 27.5 28.8 27.2 30.0

MIDAS 29.8 24.6 27.6 29.2 27.6 30.7

h = 16

A1(3) + Reg 35.0 31.2 38.3 39.6 39.9 38.4

SV-Q + Reg 36.3 30.0 29.8 30.0 29.5 30.6

SV-E + Reg 37.5 33.1 34.0 33.8 31.6 31.9

GARCH + Reg 31.6 25.7 28.1 28.4 28.6 32.3

HAR-RV 27.5 23.6 27.8 28.9 26.7 28.6

MIDAS 28.5 23.7 28.0 30.2 28.9 31.8

h = 32

A1(3) + Reg 33.0 29.6 36.4 37.4 37.5 34.4

SV-Q + Reg 36.0 29.7 28.7 29.2 29.0 29.3

SV-E + Reg 36.4 32.2 33.5 33.5 31.1 29.6

GARCH + Reg 29.3 23.4 25.7 25.7 26.3 30.9

HAR-RV 25.9 22.2 26.3 27.5 26.0 27.0

MIDAS 26.2 22.4 26.5 27.4 26.7 29.2

Table 11: Out-of-sample RMSEs for the volatility prediction in the varying-

parameter approach

RMSEs for the out-of-sample prediction of the h-week ahead yield volatilities (annualized stan-
dard deviations) are presented in basis points with h = {4, 8, 16, 32}. For the term structure and
GARCH models, the model parameters are fixed at the in-sample estimates and the regression pa-
rameters in equation (32) are re-estimated in a rolling-window fashion. For MIDAS, the weighting
parameters in equation (30) are fixed at the in-sample estimates and (ah,τ , bh,τ ) in equation (29)
are re-estimated. For HAR-RV, all parameters in equation (6) are re-estimated. The best and the
second best results in each column of each panel are displayed in bold and italic, respectively. The
out-of-sample period is from April 16, 2003 to May 27, 2009.
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Maturity 0.5 1 2 3 5 10

h = 4

+ A1(3) 1.036 0.867 0.482 0.324 −0.056 −0.374

(0.437) (0.429) (0.325) (0.314) (0.259) (0.267)

+ SV-Q 0.360 0.427 0.439 0.461 0.466 0.361

(0.142) (0.157) (0.115) (0.114) (0.126) (0.174)

+ SV-E 0.555 0.516 0.358 0.420 0.373 0.279

(0.129) (0.204) (0.137) (0.128) (0.120) (0.116)

+ GARCH 0.156 0.553 0.355 0.528 0.443 0.832

(0.120) (0.141) (0.202) (0.208) (0.197) (0.270)

h = 8

+ A1(3) 1.164 1.066 0.650 0.482 −0.022 −0.418

(0.527) (0.535) (0.414) (0.377) (0.313) (0.320)

+ SV-Q 0.362 0.459 0.518 0.542 0.506 0.329

(0.159) (0.198) (0.129) (0.126) (0.146) (0.213)

+ SV-E 0.615 0.563 0.432 0.482 0.413 0.314

(0.170) (0.248) (0.160) (0.142) (0.141) (0.142)

+ GARCH 0.273 0.718 0.460 0.578 0.422 0.802

(0.132) (0.193) (0.229) (0.237) (0.213) (0.305)

Table 12: Estimates (standard errors) of the slope coefficient on the model

forecast in the combined regression
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Maturity 0.5 1 2 3 5 10

h = 16

+ A1(3) 1.375 1.390 0.842 0.665 0.020 −0.566

(0.631) (0.681) (0.527) (0.455) (0.375) (0.342)

+ SV-Q 0.302 0.463 0.525 0.563 0.470 0.225

(0.161) (0.236) (0.161) (0.147) (0.169) (0.288)

+ SV-E 0.613 0.580 0.488 0.534 0.446 0.354

(0.229) (0.315) (0.207) (0.169) (0.169) (0.179)

+ GARCH 0.304 0.759 0.444 0.626 0.443 0.909

(0.170) (0.290) (0.302) (0.291) (0.246) (0.541)

h = 32

+ A1(3) 1.635 1.632 0.972 0.840 −0.013 −0.822

(0.739) (0.883) (0.742) (0.595) (0.515) (0.357)

+ SV-Q 0.313 0.513 0.542 0.565 0.501 0.235

(0.167) (0.247) (0.179) (0.166) (0.209) (0.312)

+ SV-E 0.542 0.513 0.481 0.516 0.442 0.343

(0.249) (0.350) (0.232) (0.198) (0.201) (0.207)

+ GARCH 0.289 0.978 0.485 0.661 0.524 0.561

(0.196) (0.303) (0.414) (0.456) (0.311) (0.913)

Table 12 (continued): Estimates (standard errors) of the slope coefficient on

the model forecast in the combined regression

The combined forecasting regression is based on the HAR-RV model:

�
RVt,t+h∆,τ

h∆
= ah,τ +

�

i={4,8,16,32}
bh,τ,i

�
RVt−i∆,t,τ

i∆
+ ch,τforecastt,h,τ + uct+h∆,τ ,

where forecastt,h,τ is taken from the term structure and GARCH models. The table

presents the estimates of ch,τ . The standard errors, computed using the method of Newey

and West (1987) with 32 lags, are in parenthesis. The in-sample data from January 4,

1991 to April 9, 2003 are used for the estimation.
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Maturity 0.5 1 2 3 5 10

h = 4

+ A1(3) 3.7 5.0 3.3 3.2 −0.4 −1.1

+ SV-Q −2.4 0.6 −3.7 −7.8 −10.5 −10.6

+ SV-E 0.9 2.3 1.7 2.5 0.1 −4.7

+ GARCH 1.3 6.2 −0.4 −3.6 −2.0 −3.5

h = 8

+ A1(3) 6.0 10.8 7.4 6.3 −0.2 −2.0

+ SV-Q −2.0 1.3 −5.4 −11.0 −14.3 −11.5

+ SV-E 3.5 5.7 4.0 4.0 0.3 −6.2

+ GARCH 3.2 11.6 −1.9 −5.5 −2.5 −3.6

h = 16

+ A1(3) 12.1 21.4 11.4 9.3 0.2 −2.3

+ SV-Q 2.4 5.0 −5.5 −10.2 −11.6 −7.1

+ SV-E 9.9 10.5 5.7 4.5 0.1 −7.3

+ GARCH 4.6 11.9 −1.4 −4.6 −1.7 −2.5

h = 32

+ A1(3) 25.0 30.7 13.0 10.1 −0.1 0.6

+ SV-Q 8.0 7.3 −6.7 −9.3 −8.4 −5.1

+ SV-E 18.9 14.1 6.5 4.0 −0.5 −6.1

+ GARCH −1.5 0.9 −1.9 −4.3 −1.1 0.2

Table 13: % changes in the out-of-sample RMSE by combined forecasts in the

fixed-parameter approach

A combined forecast is based on the HAR-RV model, where a forecast taken from the

term structure and GARCH models is added. The table presents % changes in the RMSE

from the HAR-RV forecast alone to the combined forecast. A negative (positive) number

indicates that the combined forecast decreases (increases) the RMSE. All parameters are

fixed at the in-sample estimates throughout the out-of-sample period from April 16, 2003

to May 27, 2009.
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Maturity 0.5 1 2 3 5 10

h = 4

+ A1(3) 0.1 −0.6 −0.2 0.3 1.1 0.0

+ SV-Q −3.5 −2.7 −3.6 −5.5 −6.4 −9.8

+ SV-E 0.2 0.4 1.0 2.9 5.2 0.8

+ GARCH 1.0 1.1 0.3 −1.8 −1.2 −1.7

h = 8

+ A1(3) −0.2 −1.4 −0.2 0.7 1.7 −0.5

+ SV-Q −3.5 −3.5 −5.9 −8.3 −11.0 −15.7

+ SV-E 0.8 1.1 0.8 3.8 7.3 1.8

+ GARCH 1.6 2.0 −1.1 −4.4 −2.2 −2.3

h = 16

+ A1(3) −0.8 −2.5 −0.5 0.8 1.9 −0.8

+ SV-Q −0.7 −2.6 −6.1 −6.2 −8.8 −12.1

+ SV-E 1.9 1.7 1.3 5.2 8.4 3.2

+ GARCH 2.9 3.0 −0.2 −3.9 −1.1 −0.9

h = 32

+ A1(3) −2.3 −4.0 −2.1 −1.9 0.2 −0.8

+ SV-Q 3.4 −0.8 −9.0 −6.4 −6.8 −7.7

+ SV-E 1.1 1.8 2.6 6.6 6.8 2.8

+ GARCH 0.8 3.7 −1.0 −6.0 −2.0 0.1

Table 14: % changes in the out-of-sample RMSE by combined forecasts in the

varying-parameter approach

A combined forecast is based on the HAR-RV model, where a forecast taken from the

term structure and GARCH models is added. The table presents % changes in the RMSE

from the HAR-RV forecast alone to the combined forecast. A negative (positive) number

indicates that the combined forecast decreases (increases) the RMSE. For the term struc-

ture and GARCH models, the model parameters are fixed at the in-sample estimates and

the parameters in the combined HAR-RV regression are re-estimated in a rolling-window

fashion. The out-of-sample period is from April 16, 2003 to May 27, 2009.
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Maturity 0.5 1 2 3 5 10

Panel A: RMSEs based on eq. (31) (without the forecasting regression)

SV-Q 33.7 35.0 32.8 33.9 28.3 26.9

NC1 33.7 34.4 32.7 33.7 28.4 26.9

NC2 34.5 35.2 33.7 35.0 30.3 29.1

NC3 35.3 35.0 32.3 33.4 28.2 28.0

SV-E 32.0 33.8 32.8 33.6 28.4 27.8

NC1 32.0 33.3 32.8 33.6 28.6 27.6

NC2 31.7 33.0 31.8 32.6 27.7 26.7

NC3 32.2 33.0 31.6 32.4 27.2 26.7

Panel B: RMSEs based on eq. (32) (with the forecasting regression)

SV-Q + Reg 28.7 32.5 31.1 32.4 27.5 26.3

NC1 28.7 32.5 31.1 32.4 27.5 26.3

NC2 28.9 32.6 31.0 32.4 27.6 26.4

NC3 29.7 33.4 31.3 32.4 27.3 26.1

SV-E + Reg 27.8 31.9 31.5 32.3 27.1 25.8

NC1 27.8 31.9 31.5 32.3 27.1 25.8

NC2 27.8 31.8 31.5 32.3 27.1 25.8

NC3 27.9 31.9 31.6 32.3 26.9 25.7

Table 15: In-sample RMSEs for the 4-week ahead volatility prediction with

and without the non-arbitrage

Root mean squared errors (RMSEs) for the in-sample prediction of the 4-week ahead yield

volatilities (annualized standard deviations) are presented in basis points, where panels

A and B present the results based on equations (31) and (32), respectively. The rows

labeled SV-Q and SV-E show the original results with the non-arbitrage imposed. NCi

(i = 1, 2, 3) indicates “No Constraint”, beyond the linear regression (34), on the cross-

sectional relation with the number corresponding to the stage where the non-arbitrage is

involved: it is involved with both identification of the state vector Xt and estimation of

the covariance matrix Σt in stage 1; with only the latter in stage 2; and with none in stage

3, where Xt is given by the conventional level, slope, and curvature factors. The in-sample

period is from January 4, 1991 to April 9, 2003.
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y0.5 y1 y2 y3 y5 y10
Panel A: Parameter estimates for dyt,τ = (α+ βyt,τ )dt+ σ

√
yt,τdWt

α× 102 −0.270 −0.278 0.253 0.787 1.503 2.626

(0.689) (1.001) (2.404) (1.723) (1.803) (1.992)

β −0.043 −0.040 −0.133 −0.215 −0.311 −0.446

(0.125) (0.178) (0.405) (0.282) (0.280) (0.289)

σ × 102 3.248 3.745 4.229 4.212 4.019 3.774

(0.091) (0.105) (0.119) (0.118) (0.113) (0.106)

Panel B: Means (standard deviations) of % differences

between two conditional standard deviations with and without β

h = 4 0.38 0.36 0.67 0.96 1.31 1.80

(0.07) (0.07) (0.04) (0.09) (0.11) (0.13)

h = 8 0.76 0.71 1.34 1.92 2.63 3.62

(0.15) (0.13) (0.08) (0.18) (0.22) (0.26)

h = 16 1.53 1.43 2.70 3.87 5.29 7.29

(0.30) (0.27) (0.16) (0.36) (0.46) (0.53)

h = 32 3.11 2.90 5.45 7.82 10.70 14.75

(0.62) (0.57) (0.33) (0.74) (0.96) (1.12)

Table A: Impact of omitting the mean reversion on the realized volatility

In Panel A, the estimates (standard errors) for the CIR-type square-root process fitted to

each yield are presented. In Panel B, the means (standard deviations) for the time series

of

100

��
vart[yt+h∆,τ ;σ]

vart[yt+h∆,τ ;α,β,σ]
− 1

�

are presented, where vart[yt+h∆,τ ;α,β,σ] and vart[yt+h∆,τ ;σ] are presented in equations

(38) and (39). The in-sample data from January 4, 1991 to April 9, 2003 are used for the

estimation.
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Panel A: the first-step comparison

y0.5 y1 y2 y3 y5 y10

Level 0.00 0.00 0.00 0.00 0.01 0.25

Minimum Slope 0.00 0.01 0.00 0.00 0.00 0.16

Curvature 0.01 0.02 −0.01 −0.02 0.00 0.39

Level 0.00 0.00 0.00 0.01 0.06 1.20

Median Slope 0.00 0.00 0.00 0.01 0.05 0.78

Curvature 0.00 0.00 0.00 0.00 0.03 0.73

Level 0.00 0.00 0.00 0.01 0.06 1.29

Maximum Slope 0.00 0.00 0.00 0.01 0.14 2.20

Curvature 0.00 −0.01 0.00 0.01 0.04 0.62

Panel B: the second-step comparison

r θ � y1 y3 y5

Level −0.09 −0.39 0.80 0.03 −0.06 −0.14

Minimum Slope −0.06 −0.25 0.52 0.02 −0.04 −0.10

Curvature −0.16 −0.62 1.34 0.06 −0.10 −0.23

Level −0.41 −1.90 3.89 0.13 −0.26 −0.66

Median Slope −0.27 −1.24 2.55 0.08 −0.17 −0.42

Curvature −0.25 −1.16 2.37 0.08 −0.16 −0.41

Level −0.44 −2.03 4.16 0.14 −0.28 −0.71

Maximum Slope −0.75 −3.46 7.09 0.23 −0.47 −1.18

Curvature −0.22 −0.99 2.03 0.06 −0.13 −0.34

Table C1: Comparison to the closed-form solution using the A0(3) model
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Panel C: the third-step comparison

r θ � y1 y3 y5

Level 0.04 −4.98 5.24 0.02 −0.13 −0.39

Minimum Slope 0.71 −1.28 0.34 −0.16 0.18 0.22

Curvature 2.10 −2.28 −8.07 −0.46 0.52 0.64

Level 0.50 −0.88 −7.17 −0.10 0.06 −0.10

Median Slope −0.37 2.78 −4.07 0.07 −0.04 −0.01

Curvature 0.03 −1.78 −1.90 0.01 −0.07 −0.25

Level 1.26 3.13 −13.49 −0.31 0.40 0.52

Maximum Slope 0.02 −1.91 −8.58 0.03 −0.17 −0.63

Curvature −0.78 2.98 −1.53 0.16 −0.13 −0.11

Table C1 (continued): Comparison to the closed-form solution using the A0(3)

model

Approximation errors, defined as the difference between the approximate and true yields

or state variables, are presented in bps. The errors are evaluated at nine states taken

from the actual data, where the level, slope, and curvature factors take the minimum,

median, or maximum value. Panel A presents the results for the first-step comparison,

where the true values of both the parameter and state vectors are given as input for the

approximation. Panel B presents the results for the second-step comparison, where the

true value of the parameter vector alone is given. Panel C presents the results for the

third-step comparison, where no prior information is given.
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True Approximation Diff. %Diff.

Values Est. S.E.

κ1 0.947 0.966 (0.088) −0.019 −2.0

κ2 0.017 0.019 (0.002) −0.002 −13.6

κ3 0.957 0.964 (0.089) −0.006 −0.7

θ̄ 0.146 0.135 (0.006) 0.011 7.5

σ11 × 104 0.722 0.730 (0.030) −0.008 −1.1

σ22 × 104 1.220 1.257 (0.066) −0.037 −3.0

σ33 × 104 8.036 8.240 (0.441) −0.204 −2.5

σ12 × 104 0.095 0.099 (0.036) −0.004 −3.8

σ13 × 104 −0.985 −1.019 (0.115) 0.034 −3.4

λ0
2 0.030 0.030 (0.019) 0.000 −0.9

λ0
3 −0.013 −0.014 (0.008) 0.001 −4.9

λ1
12 −0.195 −0.191 (0.037) −0.004 2.0

λ1
22 −0.514 −0.518 (0.285) 0.004 −0.8

ς × 102 0.061 0.061 (0.001) 0.000 0.4

Table C2: Parameter estimates of the A0(3) model by the approximation

method

The true parameter values are taken from the estimates presented in Table 4. Est. and

S.E. are the estimates and standard errors, respectively, obtained by the approximation

method. Diff. and % Diff. are differences and % differences between the true values and

estimates, respectively.

69



Panel A: Based on the SV-Q model

y0.5 y1 y2 y3 y5 y10

Level 0.11 0.04 0.12 0.13 −0.03 0.19

Minimum Slope 0.17 0.22 0.35 0.44 0.55 0.79

Curvature 0.37 0.13 −0.15 −0.11 −0.04 0.99

Level −0.03 −0.02 0.00 0.03 0.10 1.41

Median Slope −0.18 −0.13 −0.08 −0.02 0.01 0.45

Curvature −0.05 −0.05 −0.08 −0.08 −0.16 0.14

Level 0.06 0.14 0.23 0.27 0.13 1.34

Maximum Slope −0.14 −0.14 −0.19 −0.19 −0.08 2.64

Curvature −0.23 −0.21 −0.14 −0.04 −0.05 0.83

Panel B: Based on the SV-E model

y0.5 y1 y2 y3 y5 y10

Level 0.12 0.11 0.09 0.10 0.07 0.46

Minimum Slope 0.19 0.16 0.12 0.07 0.04 0.42

Curvature 0.39 0.35 0.20 0.10 0.08 1.39

Level −0.03 −0.05 −0.08 −0.04 −0.03 1.38

Median Slope −0.20 −0.16 −0.09 −0.06 −0.04 0.30

Curvature −0.04 −0.04 −0.04 −0.08 −0.09 0.16

Level 0.04 0.02 0.00 −0.06 −0.01 0.85

Maximum Slope −0.18 −0.18 −0.16 −0.12 0.11 2.37

Curvature −0.25 −0.20 −0.10 −0.03 0.02 0.41

Table C3: Comparison to the MC solution using the SV-Q and SV-E models

Approximation errors, defined as the difference between the approximate and MC yields,

are presented in bps. The errors are evaluated at nine states taken from the actual data,

where the level, slope, and curvature factors take the minimum, median, or maximum

value. Panels A and B present the results based on the SV-Q and SV-E models, respec-

tively.
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Maturity 0.5 1 2 3 5 10

Panel A: Based on the SV-Q model

Level −0.16 −0.16 −0.17 −0.15 −0.13 −0.12

Minimum Slope −0.24 −0.31 −0.30 −0.28 −0.23 −0.22

Curvature −0.46 −0.61 −0.67 −0.63 −0.64 −0.76

Level 0.00 −0.06 −0.06 −0.06 −0.05 −0.04

Median Slope −0.14 −0.09 −0.08 −0.06 0.01 0.10

Curvature −0.06 −0.03 −0.05 −0.02 −0.01 −0.02

Level 0.44 0.49 0.51 0.45 0.33 0.18

Maximum Slope −0.06 −0.12 −0.09 −0.08 −0.06 −0.01

Curvature −0.01 −0.07 −0.09 −0.05 0.03 0.22

Panel B: Based on the SV-E model

Level 0.06 0.04 0.04 0.02 0.01 −0.07

Minimum Slope 0.05 0.03 0.01 0.01 −0.01 −0.07

Curvature 0.07 0.05 0.01 0.05 0.06 −0.38

Level 0.02 0.02 0.02 0.02 0.01 −0.07

Median Slope −0.09 −0.07 −0.04 −0.02 −0.01 0.01

Curvature 0.02 0.02 0.01 0.02 0.01 −0.05

Level 0.00 −0.05 −0.07 −0.08 −0.08 −0.22

Maximum Slope −0.04 −0.01 −0.02 −0.03 −0.01 0.01

Curvature −0.06 −0.04 −0.01 0.00 0.02 0.03

Table C4: Accuracy to Et[Ỹ (Xt+h∆, τ)] for h = 32

Approximation errors, defined as the difference between the approximate and MC mo-

ments, are presented in bps. The errors are evaluated at nine states taken from the actual

data, where the level, slope, and curvature factors take the minimum, median, or max-

imum value. Panels A and B present the results based on the SV-Q and SV-E models,

respectively.
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Maturity 0.5 1 2 3 5 10

Panel A: Based on the SV-Q model

Level 0.63 0.72 0.81 0.74 0.59 0.41

Minimum Slope 0.87 1.36 1.53 1.41 1.00 0.49

Curvature −0.21 0.11 0.53 0.68 0.50 0.33

Level 0.56 0.74 0.79 0.75 0.64 0.52

Median Slope −0.22 0.09 0.31 0.39 0.50 0.46

Curvature 0.64 0.73 0.58 0.33 −0.02 −0.31

Level −1.52 −1.90 −1.89 −1.53 −0.88 −0.20

Maximum Slope −0.77 −1.01 −1.20 −1.26 −1.21 −1.19

Curvature 0.05 −0.34 −0.79 −0.90 −0.85 −0.82

Panel B: Based on the SV-E model

Level −0.51 −0.62 −0.62 −0.55 −0.43 −0.28

Minimum Slope 0.37 0.33 0.29 0.27 0.24 0.23

Curvature 0.98 0.53 0.10 −0.08 −0.23 −1.28

Level 0.06 −0.06 −0.16 −0.16 −0.12 −0.15

Median Slope −0.23 0.02 0.13 0.10 0.01 −0.09

Curvature −0.12 −0.15 −0.12 −0.03 0.12 0.22

Level 1.99 1.76 1.49 1.28 1.07 0.19

Maximum Slope 0.08 0.01 −0.12 −0.32 −0.66 −1.37

Curvature −0.02 −0.17 −0.36 −0.44 −0.52 −0.57

Table C5: Accuracy to
�
vart[Ỹ (Xt+h∆, τ)]/h∆ for h = 32

Approximation errors, defined as the difference between the approximate and MC mo-

ments, are presented in bps. The errors are evaluated at nine states taken from the actual

data, where the level, slope, and curvature factors take the minimum, median, or max-

imum value. Panels A and B present the results based on the SV-Q and SV-E models,

respectively.

72



0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09



0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

r

y_0.5

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

theta

y_10

-0.08 

-0.06 

-0.04 

-0.02 

0.00 

0.02 

0.04 

0.06 

91 93 95 97 99 01 03 05 07 09

epsilon



0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

-0.08 

-0.06 

-0.04 

-0.02 

0.00 

0.02 

0.04 

0.06 

91 93 95 97 99 01 03 05 07 09

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

91 93 95 97 99 01 03 05 07 09

-0.08 

-0.06 

-0.04 

-0.02 

0.00 

0.02 

0.04 

0.06 

91 93 95 97 99 01 03 05 07 09





0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09



0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09



0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09



0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

91 93 95 97 99 01 03 05 07 09


