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Summary
We study accelerated failure time (AFT) models in which the survivor function

of the additive error term is log-concave. The log-concavity assumption covers large
families of commonly-used distributions and also represents the aging or wear-out phe-
nomenon of the baseline duration. For right-censored failure time data, we construct
semi-parametric maximum likelihood estimates of the finite dimensional parameter
and establish the large sample properties. The shape restriction is incorporated via a
nonparametric maximum likelihood estimator (NPMLE) of the hazard function. Our
approach guarantees the uniqueness of a global solution for the estimating equations
and delivers semiparametric efficient estimates. Simulation studies and empirical ap-
plications demonstrate the usefulness of our method.

Keywords: Accelerate Failure Time Models, NPMLE, Weighted Rank Estimation,
Shape Restriction.

1. INTRODUCTION

The accelerated failure time (AFT) model provides an attractive alternative to the pop-
ular proportional hazards model (Cox, 1972) for analyzing censored duration/failure
time data. Let Y denote the logarithm of the duration T , C be the corresponding (log-
transformed) censoring time, ∆ = 1(Y ≤ C), and V = min(Y,C). The model of interest
is

Yi = X ′iβ0 + εi, i = 1, · · · , n, (1.1)

where Xi stands for d-dimensional covariates and the independent error term εi has some
unknown distribution F . We denote exponential transform of ε by T0, which represents
the baseline duration variable in the absence of the covariate effect. The AFT model
directly examines the effect of covariates on the length of survival, in contrast to the
proportional hazards model which focuses on the hazard rate. In many applications, it is
easier to visualize the concept that a treatment intervention or exposure to certain envi-
ronment increases or decreases the length of survival itself by some amount, as compared
to the notion that the hazard rate is changed.1

In the presence of censoring and unknown error distribution, weighted log-rank estima-
tors (Prentice, 1978) have been proposed to estimate the unknown regression coefficient
β0. The large sample properties of parameter estimates are established by Tsiatis (1990),

1This natural type of regression relationship led Sir David Cox himself (Reid, 1994) to acknowledge
“the physical or substantive basis for...proportional hazards models...is one of its weakness...accelerated
life models are in many ways more appealing because of their quite direct physical interpretation.”
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Ritov (1990), Lai and Ying (1991), and Ying (1993). Semi-parametric efficient estima-
tors are first discussed in Lai and Ying (1991) and subsequently studied by Zeng and Lin
(2007) and Ding and Nan (2011) based on kernel and sieve methods, respectively. Despite
the aforementioned theoretical advance, the practical applications of these estimators of
the AFT model remain limited. A fundamental issue is whether the estimating equation
has a global unique solution at the true parameter value, as commented by Kalbfleisch
and Prentice (2002) [p.219] “when viewed as a function of β0, these test statistics are
step functions, and furthermore they are, in general, not monotone in β0. This gives rise
to the possibility of multiple solutions to estimating equations.” For some special and
inefficient weighting schemes such as the Gehan’s weight (Fygenson and Ritov, 1994),
the resulting estimating equation is monotone and thus delivers the global uniqueness
and consistency properties. Jin et al. (2003) develop a feasible iterative algorithm that
uses the rank estimator based on Gehan’s weights as the pilot estimate. Instead of nar-
rowing down the weighting scheme, Ying (1993) explore another path that utilizes shape
restrictions on the error term to show the global properties of weighted rank estimators.

We study the AFT model under the restriction that the survivor function of the error
term ε is log-concave. Throughout this paper, a function g(x) is said to be log-concave
if the function log(g(x)) is strictly concave. It is well-known that the log-concavity of
the survival function is equivalent to the increasingness of the corresponding hazard
function2. The main advantage of such a shape restriction is that the increasing hazard
function guarantees the uniqueness of global solution to the population-level estimating
equations for various weighted rank estimators (Ying, 1993). To the best of our knowl-
edge, this key insight has not yet been converted to an efficient estimation method that
formally takes into account of the log-concave restriction. For that purpose, we propose
semi-parametric maximum likelihood estimation methods that incoporate such a restric-
tion for the AFT model. Specifically, for any given β, we estimate the hazard rate of
(Y − X ′β) using nonparametric maximum likelihood estimator (NPMLE) and enforce
the monotonicity restriction as in Huang and Wellner (1995). Note that the general NPM-
LE for the hazard function does not exist without such shape restrictions; see Zeng and
Lin (2007). Thereafter, we obtain the estimate of β that solves the efficient score function
(see Theorem 4.3 in Ding and Nan, 2011) by plugging in the NPMLE of the hazard rate
and the kernel smoothed estimate for the derivative of the hazard rate. We establish
the asymptotic distribution theory of the resulting estimators for the finite dimensional
parameter β0 and show that our estimators achieve the semi-parametric efficiency bound
(Bickel et al., 1993). Note that the efficiency bound under our log-concave restriction
remains unchanged as the one under the standard smoothness assumption. We establish
this result by showing the tangent set under the shape restriction can be well approxi-
mated by the one under the smoothness restriction and vice versa. A formal proof can be
found in Section S1.3 of the online supplement. In sum, the main appealing property of
our approach is that it achieves the same semiparametric efficiency as the kernel or sieve
based estimators (Lai and Ying, 1991; Ding and Nan, 2011) and at the same time guar-
antees the uniqueness of a global solution for the estimation equations (and the resulting
computational convenience), which previously was only shown for the inefficient Gehan’s
weighting scheme. In principle, a shape-constrained sieve MLE can serve as an alterna-

2See Proposition C.1.c. in Chapter 4 of Marshall and Olkin (2007) and the proof therein. Through-
out this paper, the increasingness (decreasingness) of a function refers to the strictly increasingness
(decreasingness).
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tive for incorporating the log-concave restriction. However, it usually requires imposing
additional inequality restrictions on the coefficients of basis functions, which may further
complicate the numerical optimization procedure; see Section 2.3.5 of Chen (2007). In
contrast, our NPMLE-based approach is made possible by the underlying log-concave
restriction and automatically satisfies it. In this sense, the shape restriction is a blessing
instead of a burden for our estimation approach.

The framework of log-concave errors comprises numerous parametric duration models
where the failure time T (conditional on covariates) can follow exponential, Weibull,
Gamma, Log-normal, Log-logistic, and many other distributions (Bagnoli and Bergstrom,
2005; Marshall and Olkin, 2007). It is worth clarifying the relationship between the log-
concavity restriction on ε and the shape of the baseline hazard function of T0 = exp(ε).
On one hand, if one believes that baseline duration T0 exhibits some aging or wear-out
phenomenon, as encoded by an increasing baseline hazard function, then its logarithm
transform ε will also have an increasing hazard rate. This feature often arises from a
non-stationary job search model where the increasing exit rate of unemployment status
is caused by a declining reservation wage and/or an increasing search intensity (Burdett
and Vishwanath, 1988; Van den Berg, 1990). On the other hand, the increasing hazard
of ε itself does not necessarily restrict the shape of the hazard of T0. Our Example 2.1
provides an encompassing parametric family in which the hazard shape of T0 can be
increasing, decreasing, or non-monotonic, under the log-concavity restriction on ε.

In establishing the large sample properties of our estimators, our main technical con-
tribution is a formal analysis of the asymptotics of the NPMLE of the hazard rate and
its kernel smoothed derivative, adapting the recent development from Groeneboom et al.
(2010), Groeneboom and Hendrickx (2018), and Westling and Carone (2019). This is
not a standard problem, as the NPMLE of the hazard rate is a piece-wise constant
function with random jump locations determined by the data, and the kernel smoothed
estimate of NPMLE is not a linear functional of the empirical measure (Groeneboom
et al., 2010). Compared with the binary choice model in Groeneboom and Hendrickx
(2018), the characterization of NPMLE is more complicated in our setting, because its
min-max representation in equation (3.15) involves random denominators, whereas the
one in Groeneboom and Hendrickx (2018) does not; see Westling and Carone (2019)
for more discussions. Our proofs that combine empirical process theory and the charac-
terization of the (smoothed) NPMLE for the monotone hazard are also of independent
interest. The shape restricted estimation and inference constitute a rich and evolving lit-
erature in econometrics and statistics, as reviewed by Groeneboom and Jongbloed (2014)
and Chetverikov et al. (2018). The rest of the paper is organized as follows: Section 2
discusses the log-concavity restriction. Section 3 proposes efficient semiparametric max-
imum likelihood estimation (SMLE) methods subject to the log-concave restriction on
the error term. Section 4 derives the asymptotic properties of the parameter estimates,
proving the consistency, asymptotic normality, and semi-parametric efficiency. Section 5
conducts simulation studies and applies the proposed methods to a real data set. The
final section concludes. Main results are proved in Appendix. Other proofs, technical
lemmas, and an additional real data example are relegated to the online supplement.

2. LOG-CONCAVITY OF ERROR TERMS IN AFT MODELS

We begin with a clarification about the log-concavity restriction used in this paper.
Proposition 2.1 collects some important properties related to the log-concavity restric-
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tion and states the relationship between the hazard functions of ε and T0. Let f(u)
be the (absolutely continuous) density function of the error term ε in (1.1), F (u) be
the cumulative distribution function, F̄ (u) = 1 − F (u) be the survivor function and
λ(u) = f(u)/F̄ (u) be the hazard function. Let h(u) be the hazard function of the base-
line duration T0 = exp(ε). The log-concave restriction in this paper refers to the survivor
function F̄ (u) being log-concave.

Proposition 2.1. (i). If f(u) is log-concave, then both F (u) and F̄ (u) are log-concave.
(ii). F̄ (u) is log-concave if and only if λ(u) is increasing. (iii). If h(u) is increasing, then
λ(u) is also increasing.

As shown in part (i) of Proposition 2.1, the log-concavity restriction on F̄ can be derived
from the log-concave restriction on the density function f . For parametric models, it is
often easier to directly verify the log-concavity of the density function. Example 2.1 below
shows that a large family of commonly-used parametric duration models falls into our
modeling framework. From the perspective of semiparametric estimation for the AFT
model, the log-concave restriction yields nice properties for weighted rank estimation.
Specifically, Lemma 4.1 shows that an increasing hazard λ is sufficient for the population
level estimating equation to have a unique global solution.

Example 2.1. (Generalized F -distribution). Various frequently used continuous para-
metric failure time models are special cases of the model (1.1) in which the error term
ε is distributed as the logarithm of the F -variate with the degrees of freedom equal to
(2m1, 2m2) on [p.38] of Kalbfleisch and Prentice (2002). The density function of ε writes:

f(u) = (m1/m2)
m1 em1u (1 + (m1/m2)eu)

−(m1+m2) /B(m1,m2), (2.2)

where B(m1,m2) is Beta function. The density function (2.2) reduces to the logistic
density when (m1,m2) = (1, 1); it reduces to the extreme value density (that leads to the
Weibull model) when (m1,m2) = (1,∞); it generates the Gamma model when m2 =∞;
it approaches to the standard normal density as (m1,m2) → (∞,∞). It is easy to show
that the second order derivative of the logarithm of f(u) is

(log f(u))
′′

= −(m1 +m2)(m2/m1)e−u/
(
1 + (m2/m1)e−u

)2
< 0, (2.3)

for any m1,m2 > 0. Hence, the density function (2.2) is log-concave and the model is
nested by our setup.

Note that the converse of part (iii) of Proposition 2.1 is not true. In other words, our
log-concave restriction on ε does not restrict the hazard function of T0 to be monotone.
One can easily see this by inspecting the following expression:

h(t) = [f(log(t))/t] /F̄ (log(t)) = λ(log t)/t. (2.4)

Therefore, our shape restriction can still be plausible in the cases where empirical evidence
rejects a monotonic hazard function of T0; see Christofides and McKenna (1996) for such
an example3. Figure 1 plots hazard functions of the error term ε and the baseline duration
T0 for parametric models encompassed by Example 2.1. Despite an increasing hazard rate

3Christofides and McKenna (1996) model the baseline duration by a generalized Gamma distribution
that is log-concave, in order to accommodate a non-monotonic hazard of the unemployment duration.
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Figure 1. Hazard functions of the error term ε (left) and the baseline duration T0 (right)
for various parametric models.

for ε, the hazard rate of its exponential transform T0 can be increasing, decreasing or
non-monotonic. We observe the following: (i). The log-normal failure time model, in
which ε has a standard normal distribution, yields a increasing hazard function for ε,
but an inverse U-shaped hazard function for T0. (ii). The Weibull model, in which the
baseline hazard function takes the form h(t) = γtγ−1, has increasing hazard functions
for both ε and T0 when the shape parameter γ > 1; it implies a increasing hazard for ε
and a decreasing hazard for T0 when 0 < γ < 1. (iii). The Log-logsitic model, in which
ε has a logistic density eu/σ/σ(1 + eu/σ)2, produces a increasing hazard function for ε
and an inverse U-shaped function for T0, when 0 < σ < 1 (σ = 0.7 in the figure). (iv).
The Gamma model, in which T0 has a density tk−1e−t/Γ(k), yields increasing hazard
functions for both ε and T0 when the shape parameter k > 1 (k = 3 in the figure).

Inspired by Abbring (2012) which studies durations defined by threshold-crossing rules,
we provide a model that yields an increasing hazard function for T0. Conditional on
X = x, the duration T is defined as the survival time after a random number of shocks
and the arrival of shocks is governed by a Poisson process Nx (t), so that

Pr {T > t|X = x} =

∞∑
k=0

(λxt)
k
e−λxt/k!P k, (2.5)

where λx ≡ exp(−x′β) is the failure rate of Nx (t) and P k is the probability of surviving
after k shocks. The following two examples are from Esary and Marshall (1973) and spell
out the interpretative content of the underlying failure mechanism based on different
specifications of the sequence P k.

Example 2.2. (Cumulative Shock Models) The failure is caused by cumulative shocks
U1, U1 + U2, · · · reaching some positive random threshold Z, as in Section 5 of Esary
and Marshall (1973), with the following specification on P̄k for k ≥ 1:

P k = Pr {U1 + ...+ Uk ≤ Z} =

∫ ∞
0

F
(k)
U (z)dGZ(z),
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where GZ is the cumulative distribution function of Z, and F
(k)
U stands for the k-th fold

convolution of the function FU , which is the distribution function of i.i.d. shocks Uk for
k ≥ 1.

Example 2.3. (Maximum Shock Models) The failure is caused by the maximum of in-
dependent shocks U1, U2, · · · reaching a fixed threshold z, as in Section 6 of Esary and
Marshall (1973), with the following specification on P̄k for k ≥ 1:

P k = Pr {max(U1, · · · , Uk) ≤ z} = Πk
i=1FUi(z),

where the distribution function FUk is not necessarily identical for k ≥ 1.

We show in the following proposition that the construction via equation (2.5) generates
an AFT model with some baseline duration T0 that has an increasing hazard function
under reasonable assumptions on P k for both Examples 2.2 and 2.3. Therefore, the
corresponding additive error term ε also has an increasing hazard rate, according to part
(iii) of Proposition 2.1.

Proposition 2.2. The duration T defined by equation (2.5) generates an AFT model
with a log-concave baseline duration T0 if the following conditions hold: (i) For the cu-
mulative shock models, both the shock U and threshold Z have log-concave densities; (ii)
For the maximum shock models, FUk(u) is decreasing in k for any u (so that subsequent
shocks are stronger).

3. SEMI-PARAMETRIC EFFICIENT ESTIMATION WITH SHAPE
RESTRICTIONS

The data consists of i.i.d. observations of {Vi, Xi,∆i; i = 1, · · · , n}, where Vi = min(Yi, Ci)
and ∆i = 1(Yi ≤ Ci). The error term εi in (1.1) is assumed to be independent of Xi and
the right-censoring time Ci. Let the marginal distribution function of covariates X be
H(x) for x in the support X . Following Ying (1993), we denote the conditional distribu-
tion and density functions of the censoring variable C as Gx(·) and gx(·), respectively.
For a given β, define εβ = V −X ′β and ε0 = V −X ′β0. We use the standard empirical
process notations as follows. For a function f of a random vector Z = (V,X,∆) that
follows distribution P ,

Pf =

∫
f(z)dP (z), Pnf = n−1

n∑
i=1

f(Zi), Gnf = n1/2 (Pn − P ) f. (3.6)

Function f can be replaced by a random function z 7→ f̂n(z;Z1, · · · , Zn) (Nan and

Wellner, 2013), so we also write P f̂n, Pnf̂n, or Gnf̂n. Furthermore, define

D(0)
n (t, β) = Pn{1(εβ ≥ t)}, D(0)(t, β) = P{1(εβ ≥ t)}, (3.7)

D(1)
n (t, β) = Pn{X1(εβ ≥ t)}, D(1)(t, β) = P{X1(εβ ≥ t)}, (3.8)

and

η̂n(t, β) = D(1)
n (t, β)/D(0)

n (t, β). (3.9)

The probability limit of η̂n(t, β) for any given β is

η0(t, β) = D(1)(t, β)/D(0)(t, β) = E[X|V −X ′β ≥ t]. (3.10)



Logconcave-error-AFT 7

In addition, we define

Nn(t, β) = Pn{1(εβ ≤ t,∆ = 1)}, N(t, β) = P{1(εβ ≤ t,∆ = 1)}. (3.11)

The likelihood function (omitting terms irrelevant for our parameters of interest) is

Ln(β, λ) = n−1
n∑
i=1

{
∆i log λ(Vi −X ′iβ)−

∫ Vi

−∞
λ(t−X ′iβ)dt

}
; (3.12)

also see Zeng and Lin (2007) and Ding and Nan (2011). The unknown parameters consist
of β ∈ B and λ(t) ∈ A, where B is a compact set in Rd and A is the space for increasing

and non-negative functions. We first derive λ̂n(·, β) that maximizes (3.12) for any fixed
β. It is an estimator of the increasing function λ0(t, β) = (dN(t, β)/dt) /D(0)(t, β) and
can be obtained by applying NPMLE for the monotone hazard function (Huang and
Wellner, 1995). Recall that εi,β = Vi −X ′iβ, and the corresponding indicator is ∆i,β for
i = 1, · · · , n. Let ε(1),β ≤ · · · ≤ ε(n),β be the order statistics, and ∆(i),β be the indicator
associated with the i-th order statistic ε(i),β . Define the weights

wi,β = n{ε(i+1),β − ε(i),β}
∫
u≥ε(i+1),β

dPn(u), for i = 1, ..., n− 1. (3.13)

Assuming that the function λ0(t, β) ≤ Mλ for some constant Mλ and for all β ∈ B,4

the NPMLE λ̂n(·, β) can be characterized as the left derivative of the greatest convex
minorant of the following “cumulative sum diagram” with points

P0 = (0, 0), and Pi =

 i∑
j=1

wj,β ,

i∑
j=1

wj,β∆(i),β/wi,β

 , for i = 1, · · · , n− 1. (3.14)

By the min-max characterization (Groeneboom and Jongbloed, 2014), the NPMLE is a
step-wise constant function uniquely determined at εi,β for i = 1, · · · , n− 1 as

λ̂n(ε(i),β , β) = max
1≤s≤i

min
i≤t≤n

∑t
j=s ∆(j),β∑t

j=s(n− j + 1)(ε(j),β − ε(j−1),β)
, (3.15)

and λ̂n(ε(n),β , β) = Mλ. In practice, it is enough to compute λ̂n(ε(i),β , β) at the first
n− 1 points as in (3.15) and thus there is no need to specify Mλ. The established pool-
adjacent-violators algorithm (PAVA) can be used to compute NPMLE in a very efficient

way; see Groeneboom and Jongbloed (2014). The probability limit of λ̂n(·, β) is λ0(t, β).
We also denote λ0(t) ≡ λ0(t, β0). It is worthwhile emphasizing that for any given β, the
likelihood function cannot be meaningfully maximized without the shape restriction on
λ (Zeng and Lin, 2007).

Referring to the semi-parametric efficient estimator presented below, smoothing is
inevitable, because the efficient score function involves the derivative of the hazard func-
tion. Thus, we adopt the smoothed maximum likelihood estimator in Groeneboom et al.

4This boundedness assumption is required for maximizing the likelihood in (3.12). Otherwise,

λ̂n(ε(n),β , β) can be chosen arbitrarily large. After obtaining the solution under the upper bound Mλ,
one can allow Mλ to grow arbitrarily large. This type of argument is common in isotonic optimization
problems, see [p338-339] of Robertson et al. (1988) and [p38-39] of Groeneboom and Jongbloed (2014).

In computation, one can set λ̂n(ε(n),β , β) = λ̂n(ε(n−1),β , β).
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(2010) and obtain

˙̂
λn(t, β) =

∫
Kh(t− u)dλ̂n(u, β), (3.16)

for a kernel density function K(·) and Kh(·) ≡ K(·/h)/h, with the bandwidth equal to
h. It is straightforward to find that the probability limit of the kernel smoothed estimate
is

λ̇0(t, β) = ∂λ0(t, β)/∂t. (3.17)

To estimate β0, we consider the following random map

Ψn (β, η, ρ) ≡ 1

n

n∑
i=1

∆iρ(Vi −X ′iβ, β){Xi − η(Vi −X ′iβ, β)}, (3.18)

where β ∈ B is the d-dimensional Euclidean parameter of interest with an unknown true
value of β0, η and ρ are functions that can be viewed as infinite dimensional nuisance
parameters. Intuitively speaking, η provides the correct centering term for the regressor
X under the censoring, whereas the weight ρ influences the efficiency. In this paper,
we consider Ψn (β, η̂n, ρ̂n) which approximates the efficient score function and belongs
to the general weighted rank estimating equation as in Tsiatis (1990), with an efficient
weighting scheme. Specifically, these nuisance components are estimated by

η̂n(t, β) = D(1)
n (t, β)/D(0)

n (t, β), ρ̂n(t, β) = I{t ≥ τU} ˙̂
λn(t, β)/λ̂n(t, β). (3.19)

Following Tsiatis (1990) (see also Lai and Ying, 1991; Ding and Nan, 2011), the trimming

constant τU is introduced to avoid the instability of D
(0)
n and λ̂n near the right tail. The

corresponding probability limit of ρ̂n(t, β) is denoted by ρ0(t, β).

Our estimator β̂n is the root of the estimating function Ψn (β, η̂n(·, β), ρ̂n(·, β)), which
is discontinuous in β. Therefore, Ψn (β, η̂n(·, β), ρ̂n(·, β)) = 0 may not hold exactly. Fol-

lowing Groeneboom and Hendrickx (2018), we define β̂n as a zero-crossing point such
that each coordinate value of Ψn (β, η̂n(·, β), ρ̂n(·, β)) changes sign in the left and right

neighborhoods of β̂n.

Definition 3.1. (Zero-crossing) We say that β∗ is a zero-crossing of a function
C : B 7→ R if each open neighborhood of β∗ contains points β1, β2 ∈ B such that
C(β1)C(β2) ≤ 0. Moreover, we say that a function C̃ : B 7→ Rd crosses zero at point β∗
if β∗ is zero-crossing in each component C̃j for j = 1, · · · , d.

We propose another estimation procedure which uses a smoothed version of λ̂n(t, β).
It is well documented in the literature (Groeneboom et al., 2010) that smoothed NPMLE
often performs better in finite samples. For the kernel density function K(·), we define

K(t) =
∫ t
−∞K(u)du and Kh̃(u) = K(u/h̃). The smoothed estimator for λ0(t, β) is

λ̃n(t, β) =

∫
Kh̃(t− u)dλ̂n(u, β). (3.20)

Therefore, the alternative estimating equation is

Ψ̃n (β, η, ρ) ≡ 1

n

n∑
i=1

∆iρ̃n(Vi −X ′iβ, β){Xi − η̂n(Vi −X ′iβ, β)}, (3.21)
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with

ρ̃n(t, β) = I{t ≥ τU} ˙̂
λn(t, β)/λ̃n(t, β). (3.22)

The corresponding solution is denoted by β̃n.
Figure 2 illustrates typical shapes of estimating functions Ψn and Ψ̃n for a single

parameter β using the unsmoothed and smoothed estimates of λ0(t, β). The sample size
is 500 and is generated from a N(2, 0.52) covariate, a standard normal error term, and
a uniform censoring variable on [0, 4]. The true parameter is β0 = 1. The bandwidths

are 5× n−1/5 for λ̃n(t, β) and 5× n−1/7 for
˙̂
λn(t, β), respectively. Both methods deliver

unique zero-crossing points, whereas Ψ̃n exhibits smoother variation.

Figure 2. The estimating equations Ψn (left) and Ψ̃n (right) as functions of the single
parameter β.

Remark 3.1. Lai and Ying (1991) are among the first who propose to use the kernel
smoothing methods to estimate the underlying hazard and its derivative functions in the
efficient score function. Their specific construction consists of (i) dividing the sample into

two disjoint subsets and evaluating a preliminary consistent estimate b̂j of β from the
jth subsample (j = 1, 2), (ii) finding from the uncensored residuals in the jth subsample

a smooth consistent estimate λ̂j of the hazard function, (iii) smoothing the estimated

hazard to obtain a smooth consistent estimate ρ̂j of λ̇/λ, and (iv) using ρ̂1 (respectively
ρ̂2) as the weight function for the linear rank statistic of the second (respectively first)
sample of residuals Yi − X ′ib. The sum S(b) of these two linear rank statistics is used
to define the rank estimator as the minimizer of ‖ S(b) ‖. However, there are practical
difficulties in carrying out this procedure, as reviewed by Kim and Lai (2000). First, this
efficient rank estimator is difficult to compute when the regressor X is multidimensional.
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Second, the kernel smoothing approach employed does not give good results unless the
sample size is very large.

Remark 3.2. Besides the guarantee of the unique solution, another advantage of our ef-
ficient weighted rank estimator over the sieve MLE in Ding and Nan (2011) stems from
its computational convenience. In the former, only the regression parameter β needs to
be solved from the estimating equations, whereas both β and the spline coefficients (the
number of such coefficients also diverges with the sample size to eliminate the approxi-
mation bias) need to be solved in the latter. For example, the sieve approach using cubic
splines and two internal knots has to solve six more parameters from the optimization
procedure than our approach. Meanwhile, the pool-adjacent-violators algorithm (PAVA)
used to compute the NPMLE of the hazard rate (Groeneboom and Jongbloed, 2014) is
faster than the iterative Newton-Raphson method for the sieve MLE estimate.

4. ASYMPTOTIC PROPERTIES

The following regularity conditions, adapted from Tsiatis (1990), Lai and Ying (1991),
and Ying (1993), are imposed throughout. We let T to be the support of ε trimmed from
the right tail at some given τU (Tsiatis, 1990).

Assumption 4.1. The covariates Xi are uniformly bounded, i.e., max1≤i≤n ‖Xi‖ ≤Mx

for some finite constant Mx.

Assumption 4.2. The error term ε is independent of (X,C) and has a finite mean. The

density f and its derivative ḟ are bounded. Moreover,
∫∞
−∞

(
ḟ(t)/f(t)

)2
f(t)dt <∞.

Assumption 4.3. The conditional density gx(t) of the censoring time C is uniformly
bounded; that is, supt∈C,x∈X |gx(t)| ≤ Mc for some finite constant Mc, where X is the
support of covariates X and C is the support of censoring variable C.

Assumption 4.4. The hazard rate λ0 of error term ε is increasing and is continuously
third-order differentiable. Moreover, λ0(t, β) is uniformly bounded away from zero for
any β in the parameter space and t ∈ T . Its derivative λ̇0(t, β) is also uniformly bounded
away from 0 and ∞.

Assumption 4.5. For the finite positive constant τU , there exists a value of ξ such that
Pr(V −X ′β0 ≥ τU ) ≥ ξ > 0.

Assumption 4.6. (i) The kernel function K(u) is a kernel density function with compact
support such that

∫
K(u)du = 1,

∫
uK(u)du = 0, and

∫
u2K(u)du < ∞. Moreover,

its derivative k(u) is uniformly continuous over the support. The kernel function and
its derivative can be written in the form of ϕ (p (x)), with some function ϕ (·) being of
bounded variation and p (x) a real polynomial on R. (ii) The bandwidths satisfy h � n−1/7
and h̃ � n−1/5.

Assumptions 4.1 to 4.3 are from Ying (1993). The monotonicity restriction in Assump-
tion 4.4 results from our log-concave restriction on the survival function of ε through
Proposition 2.1 (ii). The class of hazard rate functions that are bounded away from zero
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when t approaches to the left boundary is discussed extensively in Ridder and Woutersen
(2003). With log-concave errors, the moment bound in Condition 4 of Ying (1993) is au-
tomatically satisfied. When the error term ε has a finite mean and an increasing hazard
rate, it has a sub-exponential tail, cf. Theorem 4.1 in Barlow and Marshall (1964), which
gives rise to finite moments of all orders. In accordance with Assumption 4.5, we trim
the right tail at some large constant τU ; see equation (3.1) of Tsiatis (1990). This is a
standard practice in analyzing censored regression models (Lai and Ying, 1991; Ritov,
1990; Ding and Nan, 2011). In fact, the calculation of the semiparametric information
bound takes this trimming parameter τU as a fixed constant; see Example 4 on [p.284] of
Bickel et al. (1993). It is possible to allow τU to be infinity through more technical proofs
(see Lemma 2 of Ying, 1993), but it will not be attempted here. In Assumption 4.6, we
collect the standard requirements on kernel smoothing methods, as in Groeneboom et al.
(2010). Under the restriction, we have the following two VC-type functional classes due
to Nolan and Pollard (1987):

K1 =
{
K
(
h−1 (x− ·)

)
: x ∈ R, h > 0

}
and K2 =

{
k
(
h−1 (x− ·)

)
: x ∈ R, h > 0

}
,

which are needed to establish the convergence rates for
ˆ̇
λn and λ̃n. The population level

estimating equations can be written as

Ψ(β, η0(·, β), ρ0(·, β)) = P [∆ρ0(V −X ′β, β){X − η0(V −X ′β, β)}] . (4.23)

To show the existence of a solution of estimating equations (3.18) and (3.21) with prob-
ability tending to one and its consistency, we verify that the population level estimating
function Ψ(β, η0(·, β), ρ0(·, β)) has a unique root under the shape restriction given by
Assumption 4.4. This result essentially follows from the discussion in Section 5 of Ying
(1993) and we restate it as Lemma 4.1 for completeness.

Lemma 4.1. If the hazard function λ of the error term ε is increasing, as assumed in
Assumption 4.4, then β0 ∈ B is the unique solution to the population level estimating
functions Ψ(β, η0(·, β), ρ0(·, β)).

In particular, Ying (1993) shows that the population criterion function has a unique
zero-crossing point globally when the error term has an increasing hazard function and
the weights do not have alternating signs (either all positive or all negative). In our case,
the weighting function ρ̂n(·) defined in (3.19) is automatically non-negative, so is its
probability limit. In sharp contrast, standard kernel or sieve type estimators for ρ̂n(·)
without such shape constraint fail to deliver a unique global solution; see Kim and Lai
(2000). Based on Lemma 4.1, the consistency of our estimators can be obtained from the
uniform convergence of Ψn(β, η̂n(·, β), ρ̂n(·, β)) and the Glivenko-Cantelli theorem.

Theorem 4.1. (Consistency) Suppose that Assumptions 4.1 to 4.6 hold. Then, for all

large n, a zero-crossing β̂n for Ψn

(
β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)

)
exists with probability tending

to one and is a consistent estimator of β0. The same conclusion holds for β̃n, which is a

zero-crossing point for Ψ̃n

(
β̃n, η̂n(·, β̃n), ρ̃n(·, β̃n)

)
.

Because our estimation procedure belongs to the general Z-estimation with bundled
parameter and nonparametric nuisance components, we prove the root-n rate and asymp-
totic normality of β̂n following the route in Nan and Wellner (2013). Note that under our
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assumptions, ρ0(εβ , β) and η0(εβ , β) are both continuously differentiable with derivatives
denoted by ρ̇0β and ρ̇0β , respectively. As shown in Theorem 3.3 in Nan et al. (2009),
this implies that Ψ(β, η0(·, β), ρ0(·, β)) is differentiable in β with the bounded deriva-
tive Ψ̇β(β, η0(·, β), ρ0(·, β)) in B. Given the explicit form of Ψ(β, η(·, β), ρ(·, β)), the path
derivatives (Ichimura and Lee, 2010) with respect to both η and ρ exist, and we denote
them by Ψ̇η(β, η(·, β), ρ(·, β)) and Ψ̇ρ(β, η(·, β), ρ(·, β)), respectively.

Theorem 4.2. (Asymptotic Normality) Suppose that Assumptions 4.1 to 4.6 hold.
Then, we have the following linear representation

−Ψ̇β(β0, η0(·, β0), ρ0(·, β0))n1/2(β̂n − β0) = Gn
∫
ρ0(t, β0){X − η0(t, β0)}dM(t) + op(1),

where M(t) is the martingale:

M(t) = ∆1(V −X ′β0 ≤ t)−
∫ t

−∞
1(V −X ′β0 ≥ s)λ0(s)ds. (4.24)

Therefore, we obtain

n1/2(β̂n − β0)→ N(0, I−1(β0))

in distribution. The information matrix I(β0) is the semi-parametric efficient information
matrix given by Lemma S1 in the online supplement. The same conclusion holds for β̃n.

The calculation of semi-parametric information bound embedding shape restrictions is
not trivial; see Tripathi (2000), and Kuchibhotla et al. (2017). We formally verify in the
online supplement that for the increasing hazard rate, the information bound remains
unchanged as in Bickel et al. (1993). In order to determine the bound, the tangent set and
the projection of the (parametric) score function to the tangent set need to be calculated.
The score function is not affected by the shape restriction. The crux in our proof is to
show the tangent set remains unchanged by showing that scores for smooth sub-models
lie in the set and by exhibiting a family of smooth sub-models with scores that can
approximate any element of the set arbitrarily well are dense in the set.

Remark 4.1. The standard errors of β̂n can be obtained based on the following result:

1

n

n∑
i=1

∆i

[
ρ̂n(Vi −X ′iβ̂n, β̂n){Xi − η̂n(Vi −X ′iβ̂n, β̂n)}

]⊗2
→p I(β0). (4.25)

In the proofs of Theorem 4.1 and Theorem 4.2, we have Ψn

(
β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)

)
=

Pn{l∗β0
(V,∆, X)} + op(1), where l∗β0

is the efficient score function such that I(β0) =

E[l∗β0
(Vi, Xi,∆i)

⊗2]. The experssion of l∗β0
is given by Lemma S1 in the online supple-

ment. An adaption to the result in equation (4.25) by the Glivenko-Cantelli property is
straightforward; see Theorem 4.3 in Ding and Nan (2011).

Remark 4.2. Our asymptotic analysis also produces a uniform consistent estimator for
the hazard function λ0 with a cubic-root rate (modulo some logarithm term):

‖ λ̂n(t, β̂n)− λ0(t) ‖2= Op(n
−1/3 log n). (4.26)

Given the natural bound via the triangular inequality:

‖ λ̂n(t, β̂n)− λ0(t) ‖2≤‖ λ̂n(t, β̂n)− λ0(t, β̂n) ‖2 + ‖ λ0(t, β̂n)− λ0(t) ‖2,
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(4.26) follows from Lemma S8 in the online supplement and the root-n consistency of

β̂n.

Remark 4.3. The foundation to incorporate the time-dependent covariates in AFT mod-
els is laid down by Robins and Tsiatis (1992) and further developed by Lin and Ying
(1995) and Zeng and Lin (2007). In this setup, it is more convenient to work with the
duration T without making the logarithmic transformation. Recall in the setting with time
independent covariates X, the essence of the AFT model is that there exists some inde-
pendent baseline duration T0 such that T0 = Te−X

′β0 . With time-dependent covariates
X(t), the following specification generalizes the AFT model:

T0,i =

∫ Ti

0

exp(X ′i(s)β0)ds, i = 1, · · · , n, (4.27)

where T0,i is independent of the covariates. Lin and Ying (1995) have derived the efficient
estimating function extending equation (3.18), whereas Zeng and Lin (2007) formally
develop a semiparametric efficient estimator for the AFT model with time-dependent
covariates. It is interesting to extend our methodology to this scenario in future work.

5. NUMERICAL RESULTS

5.1. Monte Carlo Simulations

We conduct Monte Carlo simulations to evaluate the finite sample performances of our
estimators. The logarithm of the duration Y = log T is generated from the model:
Y = 2 + β1X1 + β2X2 + ε, where β1 = β2 = 1. The covariate X1 is Bernoulli with
a success probability 0.5, and the covariate X2 is normal with mean zero and standard
deviation 0.5. X1 and X2 are independent. We consider two types of log-concave errors:
(I). The error term ε is the logarithm of a Weibull-distributed variable. The density of
ε is f(u) = γeγu exp (−eγu), where γ = 1.2. In this case, the duration T condition-
al on (X1, X2) has a Weibull distribution and its hazard function is increasing. (II).
The error term ε is the logarithm of a Gamma-distributed variable. The density of ε is
f(u) = exp (ku− eu) /Γ(k), where k = 0.7. In this case, the duration T conditional on
(X1, X2) has a Gamma distribution and its hazard function is decreasing. Recall that
V = min(Y,C) and ∆ = 1{Y ≤ C}. The censoring time C is drawn from a unifor-
m distribution supported on [0, τ ], where τ is chosen to produce a 25% censoring rate.
The data in each replication is an i.i.d. sample of {Vi,∆i, X1i, X2i}ni=1 for n = 500 and
1000. We obtain semi-parametric maximum likelihood estimates of (β1, β2)′ using an un-
smoothed hazard rate (SMLE-u) and a smoothed hazard rate (SMLE-s), by repetitively
solving the estimating equations (3.18) and (3.21). We use the quartic kernel function

K(u) = 15
16

(
1− u2

)2
1{|u| ≤ 1}, which satisfies Assumption 4.6. The bandwidths for s-

moothing the estimated hazard rate and its derivative are set to hc×n−1/7 or hc×n−1/7,
respectively. The constant hc = 2 and 5. Regarding the right-tail trimming factor τU in
Assumption 4.5, we trim at the 98% quantile of Y − β1X1 − β2X2 for each (β1, β2).
As comparison, we also include the Gehan-weight estimator (Jin et al., 2003), which is
inefficient, and the sieve ML estimator (Ding and Nan, 2011, using cubic splines and two
interior knots). In our simulations, SMLE methods are computationally much faster than
the sieve estimator. On a 3.0 GHz Intel Core i5 processor and with 10 GB of RAM, SMLE
methods on average take about 25 seconds (elapsed time) while the sieve estimator takes
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about 300 seconds for each replication with sample size equal to 500. This is mainly be-
cause SMLE methods solve two-dimensional parameter β from the estimating equations,
whereas the sieve estimator has to solve both β and additional six spline coefficients.

Table 1 presents the bias, empirical standard error (SE) and square root of the mean
squared error (RMSE) for SMLE-u, SMLE-s, Genhan and sieve estimators. Results are
based on 1000 simulated samples. We make the following observations when compar-
ing these estimators. First, the performances of the proposed SMLE methods are stable
across two sets of bandwidths. SMLE-s using the smoothed hazard rate yields smaller
empirical standard errors than its unsmoothed version SMLE-u in all scenarios. Second,
SMLE methods, especially SMLE-s, turn out to be more efficient (having smaller empir-
ical standard error) than Gehan-weighted estimator in all scenarios. This substantiates
the efficiency gain of SMLE methods over the rank estimator using inefficient weights.
Third, the standard errors of SMLE-s are similar to those of the efficient sieve estimator
in all scenarios. Fourth, the SMLE methods and the Gehan-weighted estimator yield
smaller bias for β1 than the sieve estimator. Bias performances are comparable for β2.
In sum, our SMLE methods achieve the same accuracy as the sieve ML estimator and
enjoy two advantages: the guarantee of a unique global solution and faster computation.

5.2. Real Data Example

We re-visit the 4-month panel of the Current Population Survey (CPS) from September
to December 1993, previously studied by Romeo (1999). We analyze the unemployment
duration using the AFT model and focus on the sample with a positive employment
duration of less than a year. The sample size is 399 and the censoring rate is 42%.
We regress the natural logarithm of the unemployment duration (in weeks) on three
covariates: race, gender, and a re-entrant indicator that indicates whether the individual
is a labor force re-entrant. Table 2 reports coefficient estimates and standard errors. All
methods suggest that on average, white, female, and re-entrants to the labor market have
shorter unemployment durations. The negative sign of the coefficient on the re-entrant
indicator suggests that people not in the labor force are more likely to return when they
predict that there is a good chance of finding a job (Romeo, 1999). The magnitudes of
estimates do not vary much across different methods. The proposed SMLE methods give
smaller standard errors than other methods.

Figure 3 plots the estimated hazard of error term ε and the baseline hazard for the
unemployment duration T0. The left panel displays an increasing hazard function of ε, as
a result of our log-concavity restriction. The right panel shows that the estimated baseline
unemployment hazard function roughly takes a U-shape. The initial negative duration
dependence can be a result of employers perceiving unemployment duration as a signal
about the potential productivity of the worker, because the unemployed may lose valuable
skills. On the other hand, the later positive duration dependence can be explained by
falling reservation wage and/or increasing search intensity (Burdett and Vishwanath,
1988; Van den Berg, 1990). Such U-shaped duration dependence was also documented
in empirical literature (Christofides and McKenna, 1996; McCall, 1996; Addison and
Portugal, 2003).
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Table 1. Finite sample performances of the SMLEs, sieve estimator, and Gehan-weight
estimator.

SMLE-u SMLE-s Gehan Sieve
n hc = 2 hc = 5 hc = 2 hc = 5

(I) 500 β1 Bias -.0007 -.0017 -.0007 -.0010 -.0041 -.0213
Weibull SE .0960 .0944 .0927 .0920 .1021 .0959

RMSE .0960 .0944 .0927 .0920 .1021 .0982
β2 Bias .0075 .0055 .0053 .0050 .0056 .0006

SE .0970 .0954 .0931 .0936 .1043 .0914
RMSE .0973 .0956 .0932 .0937 .1044 .0914

1000 β1 Bias .0021 .0035 .0018 .0030 .0016 -.0243
SE .0703 .0704 .0691 .0698 .0762 .0693

RMSE .0703 .0705 .0691 .0698 .0762 .0734
β2 Bias .0049 .0030 .0041 .0030 .0067 .0050

SE .0696 .0698 .0689 .0691 .0752 .0672
RMSE .0698 .0698 .0690 .0692 .0755 .0674

(II) 500 β1 Bias -.0051 -.0020 -.0020 -.0010 .0036 .0181
Gamma SE .1421 .1368 .1368 .1337 .1551 .1366

RMSE .1422 .1368 .1369 .1338 .1551 .1378
β2 Bias .0032 .0042 .0042 .0040 -.0014 .0133

SE .1428 .1418 .1396 .1395 .1577 .1388
RMSE .1429 .1419 .1396 .1396 .1577 .1394

1000 β1 Bias .0017 .0012 .0012 .0012 .0014 -.0253
SE .0973 .0994 .0966 .0984 .1098 .1065

RMSE 0974 .0994 .0966 .0984 .1098 .1094
β2 Bias -.0003 -.0009 -.0004 -.0018 .0014 .0031

SE .0994 .1014 .0973 .0999 .1138 .1053
RMSE .0994 .1014 .0973 .0999 .1138 .1054

Note: SMLE-u and SMLE-s use the unsmoothed and smoothed hazard rates, respectively. Scenario
(I): The error term is the logarithm of a Weibull-distributed variate; Scenario (II): The error term
is the logarithm of a Gamma-distributed variate. The bandwidths for smoothing the hazard rate are
hc × n−1/5 (only used for SMLE-s) and hc × n−1/7 for its derivative (used for SMLE-u and SMLE-s).

Table 2. AFT model estimates for unemployment duration.

Covariates
SMLE-u SMLE-s Gehan Sieve

Est. SE Est. SE Est. SE Est. SE
Race -.296 .099 -.211 .098 -.280 .185 -.366 .147

Gender -.281 .098 -.164 .093 -.154 .174 -.259 .136
Re-entrant -.274 .096 -.313 .096 -.259 .188 -.280 .148

Note: The bandwidths for smoothing the estimated hazard rate is 1 × n−1/5 and for smoothing its
derivative is 1 × n−1/7.

6. CONCLUSION

In this paper, we study the AFT model under the constraint that the error term has a
log-concave survivor function. Exploiting this shape restriction, we proposed two semi-
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Figure 3. Estimated hazard functions of the error term ε (left) and the baseline duration
T0 (right).

parametric MLE estimators for the model coefficients. SMLE-u directly uses the NPMLE
of the hazard function, which is piece-wise constant, and SMLE-s delivers smoothed es-
timates by resorting to the kernel smoothed version of the NPMLE. Both estimators ob-
tain the semiparametric efficiency bound asymptotically. Simulation exercises show that
SMLE-s has better finite sample performances than SMLE-u, even though the former
introduces an additional bandwidth. Therefore, we recommend the SMLE-s to applied
researchers. Our work makes the AFT model a more viable tool for analyzing duration
data.

ACKNOWLEDGMENT

We thank two anonymous referees for their valuable comments. Ruixuan Liu acknowl-
edges the financial support from the Program to Enhance Research and Scholarship
(PERS) at Emory University. Zhengfei Yu acknowledges the support of JSPS KAKEN-
HI Grant Number 19K13666.

REFERENCES

Abbring, J. H. (2012). Mixed hitting-time models. Econometrica 80 (2), 783–819.
Addison, J. T. and P. Portugal (2003). Unemployment duration competing and defective

risks. Journal of Human Resources 38 (1), 156–191.
Bagnoli, M. and T. Bergstrom (2005). Log-concave probability and its applications.

Economic theory 26 (2), 445–469.
Barlow, R. and A. Marshall (1964). Bounds for distributions with monotone hazard rate

I. The Annals of Mathematical Statistics 35 (3), 1234–1257.
Bickel, P. J., C. A. Klaassen, Y. Ritov, and J. A. Wellner (1993). Efficient and adaptive

estimation for semiparametric models. Johns Hopkins University Press.
Burdett, K. and T. Vishwanath (1988). Declining reservation wages and learning. The

Review of Economic Studies 55 (4), 656–665.
Chen, h. (2007). Large sample sieve estimation of semi-nonparametric models. Handbook

of Econometrics 6, 5549–5632.



Logconcave-error-AFT 17

Chetverikov, D., A. Santos, and A. M. Shaikh (2018). The econometrics of shape restric-
tions. Annual Review of Economics 10, 31–63.

Christofides, L. N. and C. J. McKenna (1996). Unemployment insurance and job duration
in Canada. Journal of Labor Economics 14, 286–312.

Cox, D. (1972). Regression models and life-tables. Journal of Royal Statistical Society,
Series B. 24, 187–220.

Ding, Y. and B. Nan (2011). A sieve m-theorem for bundled parameters in semiparametric
models, with application to the efficient estimation in a linear model for censored data.
The Annals of Statistics 39, 3032–3061.

Esary, J. and A. Marshall (1973). Shock models and wear processes. The Annals of
Probability 1, 627–649.

Fygenson, M. and Y. A. Ritov (1994). Monotone estimating equations for censored data.
The Annals of Statistics 22, 732–746.

Groeneboom, P. and K. Hendrickx (2018). Current status linear regression. The Annals
of Statistics 46 (4), 1415–1444.

Groeneboom, P. and G. Jongbloed (2014). Nonparametric estimation under shape con-
straints. Cambridge University Press.

Groeneboom, P., G. Jongbloed, and B. I. Witte (2010). Maximum smoothed likelihood
estimation and smoothed maximum likelihood estimation in the current status model.
The Annals of Statistics 38, 352–387.

Huang, J. and J. A. Wellner (1995). Estimation of a monotone density or monotone
hazard under random censoring. Scandinavian Journal of Statistics, 3–33.

Ichimura, H. and S. Lee (2010). Characterization of the asymptotic distribution of semi-
parametric m-estimators. Journal of Econometrics 159, 252–266.

Jin, Z., D. Lin, L. Wei, and Z. Ying (2003). Rank-based inference for the accelerated
failure time model. Biometrika 90 (2), 341–353.

Kalbfleisch, J. D. and R. L. Prentice (2002). The statistical analysis of failure time data.
John Wiley & Sons.

Kim, C. and T. Lai (2000). Efficient score estimation and adaptive m-estimators in
censored and truncated regression models. Statistica Sinica 10, 731–749.

Kuchibhotla, A. K., R. K. Patra, and B. Sen (2017). Efficient estimation in convex single
index models. working paper .

Lai, T. L. and Z. Ying (1991). Rank regression methods for left-truncated and right-
censored data. The Annals of Statistics 19, 531–556.

Lin, D. Y. and Z. Ying (1995). Semiparametric inference for the accelerated life model
with time-dependent covariates. Journal of Statistical Planning and Inference 44, 47–
63.

Marshall, A. W. and I. Olkin (2007). Life distributions. Springer.
McCall, B. P. (1996). Unemployment insurance rules, joblessness, and part-time work.

Econometrica, 647–682.
Nan, B., J. D. Kalbfleisch, and M. Yu (2009). Asymptotic theory for the semiparametric

accelerated failure time model with missing data. The Annals of Statistics 37, 2351–
2376.

Nan, B. and J. A. Wellner (2013). A general semiparametric Z-estimation approach for
case-cohort studies. Statistica Sinica 23, 1155–1180.

Nolan, D. and D. Pollard (1987). U-processes: Rates of convergence. The Annals of
Statistics 15, 780–799.

Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika 65,
167–179.



18 Liu and Yu

Reid, N. (1994). A conversation with Sir David Cox. Statistical Science 9, 439–455.
Ridder, G. and T. M. Woutersen (2003). The singularity of the information matrix of

the mixed proportional hazard model. Econometrica 71 (5), 1579–1589.
Ritov, Y. (1990). Estimating in a linear regression model with censored data. The Annals

of Statistics 18, 303–328.
Robertson, T., F. T. Wright, and R. L. Dykstra (1988). Order restricted statistical

inference. John Wiley & Sons.
Robins, J. and A. A. Tsiatis (1992). Semiparametric estimation of an accelerated failure

time model with time-dependent covariates. Biometrika 79, 311–319.
Romeo, C. (1999). Conducting inference in semiparametric duration models under in-

equality restrictions on the shape of the hazard implied by job search theory. Journal
of Applied Econometrics 14, 587–605.

Tripathi, G. (2000). Local semiparametric efficiency bounds under shape restrictions.
Econometric Theory 16, 729–739.

Tsiatis, A. A. (1990). Estimating regression parameters using linear rank tests for cen-
sored data. The Annals of Statistics 18, 354–372.

Van den Berg, G. J. (1990). Nonstationarity in job search theory. The Review of Economic
Studies 57 (2), 255–277.

Westling, T. and M. Carone (2019). A unified study of nonparametric inference for
monotone functions. Annals of Statistics, forthcoming.

Ying, Z. (1993). A large sample study of rank estimation for censored regression data.
The Annals of Statistics 21, 76–99.

Zeng, D. and D. Lin (2007). Efficient estimation for the accelerated failure time model.
Journal of the American Statistical Association 102, 1387–1396.

APPENDIX: PROOFS OF MAIN RESULTS

The Appendix proves the asymptotic results in Section 4. The cited technical lemmas
are collected in the online supplement. We first introduce some notations. Let |β| denote
the Euclidean norm for a vector β. For functional nuisance parameters ρ and η, we
consider the semi-norm: ‖ ρ ‖≡ supβ∈B ‖ ρ(t, β) ‖2 and ‖ η ‖≡ supβ∈B ‖ η(t, β) ‖2 with
‖ · ‖2 denoting the L2 norm for the underlying function. Let A be the class of monotone
functions with values in [0,M ] and C be the class of functions of bounded variation with
values in [0,M ]. We further define functional classes F0 and F1 as follows:

F0 ≡
{

(y, x) 7→ I{y − x′β ≥ s} : β ∈ B, s ∈ T
}
,

F1 ≡
{

(y, x) 7→ xI{y − x′β ≥ s} : β ∈ B, s ∈ T
}
.

The corresponding convex hull of F0 and F1 are denoted as convF0 and convF1.

Proof of Theorem 4.1: We first show the following uniform convergence result

‖ Ψn(β, η̂n, ρ̂n)−Ψ(β, η0, ρ0) ‖→p 0. (A.1)

Observe that

‖ Ψn(β, η̂n, ρ̂n)−Ψ(β, η0, ρ0) ‖≤‖ (Pn − P )[∆ρ̂n(εβ , β){X − η̂n(εβ , β)}] ‖ (A.2)

+ ‖ P [∆(ρ̂n(εβ , β)− ρ0(εβ , β))X] ‖ + ‖ P [∆(ρ̂n(εβ , β)η̂n(εβ , β)− ρ0(εβ , β)η0(εβ , β))] ‖ .

Note that for any β, the NPMLE estimator λ̂n(u, β) is monotonically increasing and
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˙̂
λn(u, β) is of bounded variation (see the proof of Lemma S6). Moreover, we prove in
Lemma S6 the following functional class

G ≡
{

(v, x, δ) 7→ δ
λ̇(v − x′β, β)

λ(v − x′β, β)
(x− η(v − x′β, β)) : β ∈ B, η ∈ F̄ , λ ∈ A, λ̇ ∈ C

}
is Glivenko-Cantelli, given that η̂n ∈ F̄ ≡ convF1/convF0, λ̂n ∈ A, and

˙̂
λn ∈ C. There-

fore, the first term on the right hand side of (A.2) converges to zero in outer probability.
By Lemmas S8 and S12, we have ‖ ρ̂n(εβ , β) − ρ0(εβ , β) ‖→p 0. Hence the second term
on the right hand side of (A.2) is bounded by

‖ ρ̂n(εβ , β)− ρ0(εβ , β) ‖ P |∆X| →p 0.

Lemma S7 implies that ‖ η̂n(εβ , β)− η0(εβ , β) ‖→p 0. Then the third term on the right
hand side of (A.2) is bounded by

‖ ρ̂n(εβ , β)η̂n(εβ , β)− ρ0(εβ , β)η0(εβ , β) ‖ P |∆| ≤‖ ρ̂n(εβ , β)− ρ0(εβ , β) ‖‖ η̂n(εβ , β) ‖ P |∆|
+ ‖ η̂n(εβ , β)− η0(εβ , β) ‖‖ ρ0(εβ , β) ‖ P |∆| →p 0.

We now prove the consistency of β̂n. By Lemma 4.1, β0 is the unique solution of
Ψ(β, η0, ρ0) = 0. This implies that for any ε > 0, there is a δ > 0 such that

Pr
[
| β̂n − β0 |> ε

]
≤ Pr

[∣∣Ψn

(
β̂n, η0(·, β̂n), ρ0(·, β̂n)

)∣∣ > δ
]
.

Observe that∣∣Ψn

(
β̂n, η0(·, β̂n), ρ0(·, β̂n)

)∣∣ ≤ ∣∣Ψn

(
β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)

)∣∣
+
∣∣Ψn

(
β̂n, η0(·, β̂n), ρ0(·, β̂n)

)
−Ψn

(
β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)

)∣∣ = op(1),

where the last equality follows from the definition of β̂n and (A.1). Hence β̂n →p β0.

The proof of β̃n →p β0 is almost the same, with the only deviation of verifying
‖ ρ̃n(εβ , β) − ρ0(εβ , β) ‖→p 0, where ρ̃n(εβ , β) is defined in (3.22). This immediately

follows from Lemma S12. The proof of β̂n’s existence follows closely from Theorem 4.1
in Groeneboom and Hendrickx (2018) and is provided in S1.2 of the online supplement. �

Proof of Theorem 4.2: We present a detailed proof for β̂n and highlight the neces-
sary changes for β̃n. First define Ψn(β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)) = 0 following the proof of
Theorem 4.1 in Groeneboom and Hendrickx (2018): this can be done by taking convex

combinations of Ψn evaluated at the left and right limit of β̂n, given the zero-crossing
nature of β̂n. We then verify that the functional estimates η̂ and ρ̂ converge fast enough
as

‖ η̂n − η0 ‖= Op(n
−1/2), ‖ ρ̂n − ρ0 ‖= Op(log2 n× n−2/7), (A.3)

by using Lemmas S7 and S12. Note that both rates are faster than the critical rate n−1/4

in Nan and Wellner (2013). By Lemma S6, the following stochastic equicontinuity result
holds:

Gn
[
∆
(
ρ̂n(εβ̂n , β̂n){X − η̂n(εβ̂n , β̂n)} − ρ0(ε0, β0){X − η0(ε0, β0)}

)]
= op(1). (A.4)
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Since Ψ(β0, η0(·, β0), ρ0(·, β0)) = 0, we get

n1/2
[
Ψ(β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)−Ψ(β0, η0(·, β0), ρ0(·, β0))

]
= n1/2(Ψ−Ψn)(β̂n, η̂n(·, β̂n), ρ̂n(·, β̂n)) + op(1)

= −n1/2(Ψn −Ψ)(β0, η0(·, β0), ρ0(·, β0)) + op(1),

where we make use of (A.4) in the second equality. Then we take the second-order Taylor
expansion of the left hand side of the first equality, which leads to

− Ψ̇β(β0, η0(·, β0), ρ0(·, β0))n1/2(β̂n − β0)

= n1/2
{

(Ψn −Ψ)(β0, η0(·, β0), ρ0(·, β0)) + Ψ̇η(β0, η0(·, β0), ρ0(·, β0))[(η̂n − η0)(·, β0)]
}

+ op(1).

(A.5)

The second order terms are negligible due to (A.3). The first order effect of estimation
for ρ0 is canceled:

Ψ̇ρ(β0, η0(·, β0), ρ0(·, β0))[(ρ̂n − ρ0)(·, β0)] = 0. (A.6)

To prove this assertion, note that for any function g(ε0, β0),

P

{∫
1(ε0 ≥ s)[X − η0(ε0, β0)]ρ̇0β(ε0, β0)g(ε0, β0)dΛ0(s)

}
= 0, (A.7)

because the conditional expectation of the term inside the brackets is zero by first con-
ditioning on 1{V −X ′β0 ≥ t}. Moreover, the following local martingale has a zero mean:

P

{∫
[X − η0(ε0, β0)]ρ̇0β(ε0, β0)g(ε0, β0)dM(s)

}
= 0, (A.8)

where M(t) is the martingale associated with the counting process:

M(t) = ∆1(V −X ′β0 ≤ t)−
∫ t

−∞
1(V −X ′β0 ≥ s)dΛ0(s). (A.9)

Therefore, the functional derivative with respect to ρ is equal to zero by summing up
(A.7) and (A.8) and letting g(·, β0) = [(ρ̂n − ρ0)(·, β0)]:

P{[X − η0(ε0, β0)]ρ̇0β(ε0, β0)∆[(ρ̂n − ρ0)(·, β0)]} = 0.

Further simplifying (A.5) leads to

n1/2
{

(Ψn −Ψ)(β0, η0(·, β0), ρ0(·, β0)) + Ψ̇η(β0, η0(·, β0), ρ0(·, β0))[(η̂n − η0)(·, β0)]
}

= Gn
∫
ρ0(t, β0){X − η0(t, β0)}dM(t) + op(1),

along the same line of Nan et al. (2009). The asymptotic covariance matrix of Gn
∫
ρ0(t, β0){X−

η0(t, β0)}dM(t) coincides with the efficient information matrix given by Lemma S1. Re-
garding the asymptotic analysis of β̃n, the only change occurs to the convergence rate of
the smoothed hazard function as

‖ λ̃n(t, β)− λ0(t, β) ‖= Op(n
−2/5 log2 n). (A.10)

Nevertheless, this does not alter the rate of ρ̃n as the convergence rate of
˙̂
λn remains the

slower and determining one. �
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S1. PROOFS AND TECHNICAL LEMMAS

We first introduce some notations. Let |β| denote the Euclidean norm for a vector β.
For the functional nuisance parameters ρ and η, we consider the following semi-norm:
‖ ρ ‖≡ supβ∈B ‖ ρ(t, β) ‖2 and ‖ η ‖≡ supβ∈B ‖ η(t, β) ‖2 with ‖ · ‖2 denoting the L2

norm for the underlying function. We denote a large positive constant by M whose value
might change line by line. We add subscripts for M if there is potential confusion. For
two sequences an, bn, an . bn, if an ≤ bn for some large M independent of n. Moreover,
we denote an � bn if an . bn and bn . an simultaneously. For any set E, linE denotes
the linear subspace generated by E and E stands for the L2 closure of E.

S1.1. Log-concavity

Proof of Proposition 2.1: (i). See Theorems 1 and 3 of Bagnoli and Bergstrom (2005).
(ii). See Corollary 2 of Bagnoli and Bergstrom (2005).
(iii). Let fT0

(t) and F̄T0
(t) be the density and the survival function of the baseline dura-

tion T0, respectively. Since ε = log(T0), one immediately obtains

λ(u) =
f(u)

F̄ (u)
=
fT0

(exp(u)) exp(u)

F̄T0(exp(u))
= h(exp(u)) exp(u),

which is increasing in u as both h(·) and exp(u) are increasing functions. �

Proof of Proposition 2.2: It is straightforward to observe that the duration defined by
the shock process can also be written as T = T0 exp(X ′β0), where the baseline duration
T0 is defined as the survival time after a random number of shocks and the arrival of
shocks is governed by a homogeneous Poisson process N (t):

Pr {T0 > t} =

∞∑
k=0

(t)
k
e−t

k!
P k.

The conditional distribution of T is

Pr {T > t|X = x} = Pr
{
T0 > e−x

′βt|X = x
}

=

∞∑
k=0

(
e−x

′βt
)k
e−e

−x′βt

k!
P k.

The covariate effect exp(x′β) enters the model by changing the arrival rate of the nul-
l Poisson process N(t). This feature is in accordance with the influence of covariates
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on the conditional hazard function of the duration T in AFT models, as its role is to
accelerate or decelerate the time to failure. According to Theorem 3.1 in Esary and
Marshall (1973), T0 has an increasing hazard function if P k/P k−1 is decreasing in k.
The requirement stated in the proposition imply such restriction on the sequence P̄k for
Examples 2.2 and 2.3; see Theorem 5.5 and Theorem 6.1 in Esary and Marshall (1973). �

S1.2. Global Unique Solution

Proof of Lemma 4.1: For notation simplicity, we use Ψ(β0, η0, ρ0) to denote Ψ(β, η0(·, β), ρ0(·, β))
whenever no confusion is caused.

It suffices to show that Ψ(β0, η0, ρ0) = 0 and (β − β0)′Ψ(β, η0, ρ0) > 0 for all β ∈
B \ {β0}. Let Ḡx(·) ≡ 1 −GC|X(·|X = x), where GC|X is the CDF of C conditional on
X, and let H(·) be the CDF of X. Using equation (5.4) of Ying (1993), Ψ(β, η0, ρ0) can
be written as∫

λ̇(t, β)

λ(t, β)

[∫
Ḡx(t+ β′x)f(t+ (β − β0)′x)dH(x)

]
q0(t, β)dt,

where

q0(t, β) ≡
∫
xḠx(t+ β′x)f(t+ (β − β0)′x)dH(x)∫
Ḡx(t+ β′x)f(t+ (β − β0)′x)dH(x)

−
∫
xḠx(t+ β′x)F̄ (t+ (β − β0)′x)dH(x)∫
Ḡx(t+ β′x)F̄ (t+ (β − β0)′x)dH(x)

.

Obviously q0(t, β0) = 0. Hence Ψ(β0, η0, ρ0) = 0. Then following equation (5.5) of Ying
(1993), we obtain

(β − β0)′Ψ(β, η0, ρ0) =

∫
λ̇(t, β)

λ(t, β)

[∫
Ḡx(t+ β′x)f(t+ (β − β0)′x)dH(x)

]
q(t, β)dt,

where

q(t, β) ≡
∫

(β − β0)′xḠx(t+ β′x)f(t+ (β − β0)′x)dH(x)∫
Ḡx(t+ β′x)f(t+ (β − β0)′x)dH(x)

−
∫

(β − β0)′xḠx(t+ β′x)F̄ (t+ (β − β0)′x)dH(x)∫
Ḡx(t+ β′x)F̄ (t+ (β − β0)′x)dH(x)

.

For x ∈ Rd, let R1, R2, ...., Rd be a sequence of orthogonal vectors satisfying R1 = β−β0.
Define x̃β ≡ [x̃β,1, x̃β,2, ..., x̃β,d]

′ ≡ R′x, where R ≡ [R1, R2, ..., Rd]. For any β 6= β0, we
re-write q(t, β) using x̃β,1 = (β − β0)′x and x = (R′)−1x̃β .

q(t, β) =

∫
x̃β,1q1(t, x̃β,1)dH̃(x̃β,1)−

∫
x̃β,1q2(t, x̃β,1)dH̃(x̃β,1),



Online supplement S3

where

q1(t, x̃β,1) ≡ f(t+ x̃β,1)∫
f(t+ x̃β,1)dH̃(x̃β,1)

,

q2(t, x̃β,1) ≡ F̄ (t+ x̃β,1)∫
F̄ (t+ x̃β,1)dH̃(x̃β,1)

,

dH̃(x̃β,1) ≡
∫
x̃β,2,...,x̃β,p

Ḡx(t+ β′(R′)−1x̃β)dH((R′)−1x̃β).

Because the log-concavity of F (·) implies an increasing hazard function f(·)/F̄ (·), the ra-
tio of two density functions (with respect to dH̃(x̃β,1)) q1(t, x̃β,1)/q2(t, x̃β,1) is increasing
in x̃β,1. Since the monotone likelihood ratio implies first order stochastic dominance (see
Chapter 2 of Marshall and Olkin, 2007), it follows that q(t, β) > 0 for all β 6= β0. Again
by the log-concavity of F (·), λ̇(t, β) > 0. Hence we conclude that (β−β0)′Ψ(β, η0, ρ0) > 0
for all β ∈ B \ {β0}. �

Proof of the existence of zero-crossing points in Theorem 4.1 The uniform
convergence in (A.1) of the Appendix leads to

Ψn(β, η̂n(β), ρ̂n(β)) = Ψ̇β0
(β − β0) + rn(β), (S.1)

where rn(β) = op(1) + o(β − β0). We now define for h > 0,the function

Ψn,h(β, η̂n(β), ρ̂n(β)) = Ψ̇β0(β − β0) + r̃n,h(β), (S.2)

with

r̃n,h(β) = h−d
∫
Kh(u1 − β1) · · ·Kh(u1 − β1)rn(u1, · · · , ud)du1 · · · dud, (S.3)

where K is standard kernel density function supported on [−1, 1] and β′ = (β1, · · · , βd)′.
Note that limh→0 r̃n,h(β) = rn(β). We reparameterize by defining γ = Ψ̇β0β and γ0 =

Ψ̇β0
β0. This gives

Ψn,h(β, η̂n(β), ρ̂n(β)) = γ − γ0 + r̃n,h(Ψ̇−1β0
γ). (S.4)

Given the result in (S.1), the mapping γ 7→ γ0 − r̃n(Ψ̇−1β0
γ) maps, for each δ > 0, the

ball Bδ(γ0) = {γ : |γ − γ0| ≤ δ} into Bδ/2(γ0) = {γ : |γ − γ0| ≤ δ/2} with probability
approaching to 1. Therefore by Brouwer’s fixed point theorem (Groeneboom and Hen-
drickx (2018)), the mapping γ 7→ γ0 − r̃n,h(Ψ̇−1β0

γ) has a fixed point which we denote by

γn,h. Let βn,h ≡ Ψ̇−1β0
γn,h, then we have

Ψn,h(βn,h, η̂n(βn,h), ρ̂n(βn,h)) = 0 (S.5)

By compactness of B, the sequence (βn,1/k)∞k=1 must have a subsequence (βn,1/kl) with
a limit point β̄n as l → ∞. Finally, we prove as in Groeneboom and Hendrickx (2018)
that Ψn(β, η̂n(β), ρ̂n(β)) has a crossing of zero at β̄n by contradiction.

Suppose that the j-th component Ψj
n of Ψn does not have a crossing of zero at β̄n.

Then there must be an open ball Bδ(β̄n) = {β : |β − β̄n| < δ} of β̄n such that Ψj
n has

a constant sign in Bδ(β̄n), say Ψj
n(β, η̂n(β), ρ̂n(β)) ≥ c > 0 for all β ∈ Bδ(β̄n) and some

constant c > 0. Arguing as Groeneboom and Hendrickx (2018), the j-th component of
Ψj
n,h of Ψn,h satisfies

Ψj
n,h(β, η̂n(β), ρ̂n(β)) ≥ c

2
, (S.6)
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for sufficiently small h and all β ∈ Bδ(β̄n), which contradicting (S.5), since βn,h for
h = 1/kl belongs to Bδ(β̄n) for large kl. �

S1.3. Semi-parametric Efficiency

The calculation of semi-parametric information bound embedding shape restrictions is
not a trivial task. Adapting the argument in Kuchibhotla et al. (2017), we formally
verify that for the increasing hazard rate as assumed in our paper, the information
bound remains unchanged as in Bickel et al. (1993). In order to determine the bound,
the tangent set and the projection of the (parametric) score function to the tangent set
need to be calculated. The score function is not affected by the shape restriction. The
crux in our proof is to show the tangent set remains unchanged by showing that scores
for smooth submodels lie in the set and by exhibiting a family of smooth submodels with
scores that can approximate any element of the set arbitrarily well are dense in the set.
Note that the calculation of the semiparametric information bound takes this trimming
parameter τU as fixed; see Example 4 on page 284 of Bickel et al. (1993). Thus, the range
of the (stochastic) integral l∗β0

in Lemma S1 is taken to be T throughout. We suppress
T without confusion for notational simplicity.

Lemma S1. (Semiparametric efficiency bound) In model (??) with right censor-
ship, the efficient score function for estimating β0 is

l∗β0
(Vi, Xi,∆i) =

∫
(Xi −E[Xi|Yi − β′0Xi ≥ t])

(
λ̇0(t)

λ0(t)

)
dM(t), (S.7)

where

M(t) = ∆i1{Vi − β′0Xi ≤ t} −
∫ t

−∞
1{Vi − β′0Xi ≥ s}dΛ0(s), (S.8)

and Λ0(·) is the cumulative hazard function of the error term ε.

Proof of Lemma S1: The complication in our setting is that the true hazard rate λ0(t)
is increasing. Recall that we assume λ0 ≥ c > 0 over its support and its derivative is
bounded and strictly positive, say λ̇0 ≥ c > 0. We consider the following parametric
sub-family that contains the true model:

βh1
= β0 + h1α, log λh2

(t) = log λ0(t) + h2θ(t), (S.9)

where h1 and h2 are both scalars converging to zero and α is a d−dimensional vector
as in Lai and Ying (1991). The local perturbation function θ(t) is a univariate function
that is uniformly bounded and has uniformly bounded first-order derivative θ̇(t). These
requirements are made to guarantee the monotonicity of λh2(t) for small enough h2.
Therefore, the score functions are

lβ0 = X

∫
λ̇0(t)

λ0(t)
dM(t), (S.10)

lλ0
[θ] =

∫
θ(t)dM(t), (S.11)
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where M(t) is the natural martingale in our Theorem 3.2. The efficient score function
is l∗β0

= lβ0 − lλ0 [θ∗] for which lβ0 − lλ0 [θ∗] is orthogonal to the nuisance tangent space
denoted by ΛS :

ΛS ≡ lin{lλ0
[θ] : λh2

(t) is increasing for small enough h2 and θ ∈ L2(P )} (S.12)

Obviously the L2 closure of the linear span of lλ0
[θ] where the function θ has bounded

first-order derivative (Bickel et al., 1993) is a subset of ΛS . As shown in Section 4 of
Kuchibhotla et al. (2017), we get

lin{lλ0
[θ] : θ has a bounded first-order derivative} = lin{lλ0

[θ] : θ ∈ L2(P )}, (S.13)

leading to the conclusion that ΛS is also equal to lin{lλ0
[θ] : θ ∈ L2(P )}. The linear span

generated by those nuisance functional components agree with each other and the mono-
tonicity of the nonparametric component does not change the efficient score calculation;
also see Tripathi (2000) for a similar setting of where the functional nuisance parameter
is an increasing function in the partial linear model. Now the efficient score function is
the one obtained by Ritov and Wellner (1988):

l∗β0
(Vi, Xi,∆i) =

∫
(Xi −E[Xi|Yi − β′0Xi ≥ t])

(
λ̇0(t)

λ0(t)

)
dM(t), (S.14)

and the resulting information I(β0) immediately follows from Lemma S1:

I(β0) = E[l∗β0
(Vi, Xi,∆i)

⊗2]

= E [XiX
′
iJ(Ci − β′0Xi)]

−
∫

E[Xi|Ci − β′0Xi ≥ t]E[Xi|Ci − β′0Xi ≥ t]′E[1{Ci − β′0Xi ≥ t}]dJ(t),

(S.15)

where

J(t) =

∫ t

−∞

(
λ̇0(s)

λ0(s)

)2

dF0(s). (S.16)

�

S1.4. Empirical Processes

We first restate some necessary definitions and Theorem 2.4.1 in Van Der Vaart and
Wellner (1996) that will be used repeatedly in the sequel. Let F be the class of functions
and L2(Q) be the L2-norm defined by a probability measure Q . For any probability
measure Q, let N(ε,F , L2(Q)) be the minimal number of balls of radius ε needed to
cover the class F . The entropy integral J(δ,F) is defined as

J(δ,F) ≡ sup
Q

∫ δ

0

√
1 + logN(ε,F , L2(Q))dε.

An envelope function of a functional class F is a function F such that |f(x)| ≤ F (x) for
all x and f ∈ F .
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Lemma S2. (Theorem 2.14.1 in Van Der Vaart and Wellner (1996)) Let P0 be
the distribution of the underlying observation and let F be a P0-measurable class with an
envelope function F . We have

E sup
f∈F
|Gnf | . J(1,F) ‖ F ‖P0,2 (S.17)

Lemma S3. (Theorem 2.7.5 in Van Der Vaart and Wellner (1996)) Let A be the
class of monotone functions with values in [0,M ], then for all δ > 0,

J(δ,A) .
√
δ. (S.18)

Let C be the class of functions of bounded variation with values in [0,M ], then for all
δ > 0,

J(δ, C) .
√
δ. (S.19)

Lemma S4. (Entropy for Convex Hull of VC Classes) Let F be a VC-class with
VC index equal to v, and denote convF be the convex hull of F , then

J(δ, convF) . δ
2
v+2 . (S.20)

In our context, the following two VC classes play important roles in analyzing η̂n:

F0 ≡
{

(y, x) 7→ {1(y − x′β ≥ s) : β ∈ B, s ∈ T
}
, (S.21)

and

F1 ≡
{

(y, x) 7→ x{1(y − x′β ≥ s) : β ∈ B, s ∈ T
}
. (S.22)

We denote the corresponding convex hull of two classes as convF0 and convF1, respective-

ly. Note that D
(k)
n (s, β) (k = 0, 1) are in convF0 and convF1, see Nan and Wellner (2013).

The next lemma provides the entropy bound for an important functional class in our
remaining proofs; see also Lemma 10.1 in Groeneboom and Hendrickx (2018).

Lemma S5. Consider the following function class:

F2
Kδ,0 = {λ(x′β) : sup |λ| ≤ K1, |β − β0| ≤ K2}, (S.23)

where the function λ(·) belongs to the class of monotone functions, then the following
entropy bound holds:

H[]

(
ε,F2

Kδ,0, ‖·‖2
)
≤ MK1

ε
, (S.24)

for some finite constant M .

Proof of Lemma S5: For any small εβ , the compact neighborhood of β0 can be covered
by Nβ neighborhoods with diameters no larger than εβ , where Nβ ≤Mε−qβ . Thus, for any
β, we can find i ∈ {1, · · · , Nβ} such that |β − βi| ≤ ε. For the monotone function λ, we
can find brackets [λLj , λ

U
j ] with size ε covering the class of monotone functions with range

restricted to [−K1,K1]. Moreover, the number of brackets Nλ is bounded by exp(K1ε
−1)

up to some finite constant.
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Consider any function f(x) in F2
Kδ,0, one has

f(x) ≡ λ(x′β) = λ(x′βi + x′(β − βi)), (S.25)

which leads to

λ(x′βi −Mεβ) ≤ f(x) ≤ λ(x′βi +Mεβ), (S.26)

given that the covariates X have compact support. Therefore, we can cover the element
in F2

Kδ,0 by

λLj (x′βi −Mεβ) ≤ f ≤ λUj (x′βi +Mεβ), (S.27)

for a pair [λLj , λ
U
j ] that covers λ.

Now we verify the size of new bracket [λLj (x′βi −Mεβ), λUj (x′βi + Mεβ)] is less than
ε up to some finite constant with a proper choice of εβ . We start with the following
decomposition:

‖ λUj (x′βi +Mεβ)− λLj (x′βi −Mεβ) ‖2 ≤ ‖ λUj (x′βi +Mεβ)− λ(x′βi +Mεβ) ‖2
+ ‖ λ(x′βi +Mεβ)− λ(x′βi −Mεβ) ‖2
+ ‖ λ(x′βi −Mεβ)− λLj (x′βi −Mεβ) ‖2 .

Apparently, the first and third terms are bounded up by ε by the construction of
[λLj , λ

U
j ]. Considering the second term, one get

‖ λ(x′βi +Mεβ)− λ(x′βi −Mεβ) ‖22≤M
∫ 2M

−2M
(λ(t)− λ(t− 2Mεβ))

2
dt

by the change of variable. Now given the monotonicity of λ and the fact that it is bounded
in absolute value by K, we have∫ 2M

−2M
(λ(t)− λ(t− 2Mεβ))

2
dt ≤M

∫ 2M

−2M
(λ(t− 2Mεβ)− λ(t)) dt

=M

[∫ −2M
−2M−2εβM

λ(t− 2Mε)dt−
∫ 2M

2M−2εβM
λ(t)dt

]
.εβ .

Then we take εβ = ε2, we get ‖ λ(x′βi +Mεβ)− λ(x′βi −Mεβ) ‖2. ε. Thus, the overall
bracketing entropy number is bounded by:

H[]

(
ε,F2

Kδ,0, ‖·‖2
)
≤ logNβ + logNλ ≤ 2q log(ε−1) +

MK1

ε
.
MK1

ε
.

�

Now we obtain the entropy bounds for the key functional class in our context and
prove the asymptotic characterizations for terms in showing consistency and asymptotic
normality. Note that the uniform convergence result in Lemma S8 implies that the es-
timated hazard rate function is uniformly bounded away from zero, given that the true
hazard rate function is uniformly bounded away from zero. Therefore, we can restrict
our attention to bounded monotone functions for the classes involving 1/λ(·, β).

Lemma S6. The functional class G defined by

G ≡
{

(y, x, δ) 7→ δρ(y − x′β)[x− η(y − x′β)] : β ∈ B, η(t, β) ∈ F̄ , ρ ∈ H
}

(S.28)



S8 Liu and Yu

has bounded entropy integral, where F̄ ≡ convF1/convF0 and H ≡ C/A. Therefore, we
have the following Glivenko-Cantelli result

Pn
[
∆ρ̂n(εβ̂n , β̂n){X − η̂n(εβ̂n , β̂n)}

]
− P [ρ0(ε0, β0){X − η0(ε0, β0)}] = op(1),

and the stochastic equicontinuity as

Gn
[
∆
(
ρ̂n(εβ̂n , β̂n){X − η̂n(εβ̂n , β̂n)} − ρ0(ε0, β0){X − η0(ε0, β0)}

)]
= op(1).

Proof of Lemma S6: We first verify that the uniform entropy integral J(1,G) is
bounded. We consider the following three subclasses:

G1 ≡
{

(y, x, δ) 7→ 1/λ(y − x′β, β) : β ∈ B, λ(t, β) ∈ A
}
, (S.29)

G2 ≡
{

(y, x, δ) 7→ λ̇(y − x′β, β) : β ∈ B, λ̇(t, β) ∈ C
}
, (S.30)

G3 ≡
{

(y, x, δ) 7→ δ[x− η(y − x′β)] : β ∈ B, η(t, β) ∈ F̄
}
. (S.31)

Because the NPMLE estimator λ̂n(t, β) is an increasing function for any given β, G1 is the
class involving monotonically decreasing functions. Hence, the uniform entropy integral
J(1,G1) is bounded. A similar argument applies to G2 because the kernel estimator of its

density function is
˙̂
λn(t, β) is

˙̂
λn(t, β) =

∫
Kh(t− u)dλ̂n(u, β),

for a continuous kernel function K and a function of bounded variation λ̂n (since it

is increasing). Therefore,
˙̂
λn(t, β) is of bounded variation by Theorem I.5.c in Widder

(1941). The composition of λ̂n or
˙̂
λn with the linear index y − x′β still has the bounded

entropy integral as shown in our Lemma S5. Moreover, D
(k)
n (t, β) and D(k)(t, β) are in

the convex hull of certain VC classes for k = 0, 1. Thus, the resulting uniform entropy
integral is bounded. Thus, the conclusion for the whole functional class G = G1 · G2 · G3
follows from Example 2.10.8 Van Der Vaart and Wellner (1996).
Thereafter, we show

‖ P [δ{ρ[X − η]− ρ0[X − η0]}] ‖≤‖ P [δX(ρ− ρ0)] ‖ + ‖ P [δ(ρη − ρ0η0)] ‖→ 0,

as |β − β0| → 0, ‖ η − η0 ‖→ 0, and ‖ ρ− ρ0 ‖→ 0.
Hence, by (S.17) we get the desired stochastic equicontinuity as in (??) of Appendix A
in the paper. �

We then present the linear expansion of η̂n in Lemma S7, which has been established
by Nan and Wellner (2013). We refer readers to [page 1172] of their paper for the proof.

Lemma S7. Suppose that Assumptions 4.1 to 4.6 hold. Then we have the following ex-
pansion

n1/2 [η̂n(t, β)− η0(t, β)] = D(0)(t, β)−1Gn [1(εβ ≥ t){X − η0(t, β)}] + op(1). (S.32)

Therefore, ‖ η̂n − η0 ‖= Op(n
−1/2).
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S1.5. Convergence Rate of Estimators of the Hazard Function and Its Derivative

This section is targeted to show the rate of convergence of ρ̂n as ‖ ρ̂n−ρ0 ‖= Op(log2 n×
n−2/7). Given the ratio form of ρ̂n, the crux is to determine the rate of

˙̂
λn. We introduce

additional notations. Let λ̂n be the NPMLE and {τ1, ..., τm} with m ≤ n be its jump
points. Denote intervals Ji ≡ [τi, τi+1) for 0 ≤ i ≤ m− 1. For u ∈ Ji, define

Ân(u, β) =


τi, if ∀t ∈ Ji : λ0(t, β) > λ̂n(τi, β)

s, if ∃s ∈ Ji : λ0(s, β) = λ̂n(s, β)

τi+1, if ∀t ∈ Ji : λ0(t, β) < λ̂n(τi, β).

We first state three lemmas regarding the NPMLE of the monotone hazard function.
Their proofs are in analog with the ones in Groeneboom et al. (2010) and are hence omit-
ted. Lemma S8 concerning the properties of the NPMLE for the increasing hazard rate
λ0(t, β). The proof is in analog with Equations (2.1), (A.20), and (A.21) in Groeneboom
et al. (2010).

Lemma S8. Suppose that Assumptions 4.1 to 4.6 hold. Then we have

Pr
(

lim
n→∞

‖ λ̂n(u, β)− λ0(u, β) ‖= 0
)

= 1,

‖ λ̂n(u, β)− λ0(u, β) ‖= Op

(
log n× n−1/3

)
,

‖ Ân(u, β)− u ‖= Op

(
log n× n−1/3

)
. (S.33)

The following Lemma is in analogy with Lemma 4.1 of Groeneboom et al. (2010) .

Lemma S9. Suppose that Assumptions 4.1 to 4.6 hold. For any given t and β, the fol-
lowing representations hold:∫

Kh̃(t− u)d(λ̂n − λ0)(u, β) = −
∫
ψh̃,t(λ̂n(u, β)− λ0(u, β))du, (S.34)

and ∫
Kh(t− u)d(λ̂n − λ0)(u, β) = −

∫
φh,t(λ̂n(u, β)− λ0(u, β))du, (S.35)

where

ψh̃,t(u) = Kh̃(t− u)/p(v, x, δ), and φh,t(u) = kh(t− u)/p(v, x, δ), (S.36)

with kh(·) ≡ K ′(·/h)/h2 and

p(v, x, δ) = fδ(v − x′β0)Ḡδx(v)F̄ 1−δ(v − x′β0)g1−δx (v)dH(x), (S.37)

is the joint density function of (V,X,∆).

Consider the piece-wise constant version of φh,t which is constant on the same intervals

where the NPMLE λ̂n(·, β) remains constant. For u ∈ Ji, define

φ̄h,t(u) = φh,t(Ân(u, β)) and ψ̄h̃,t(u) = ψh̃,t(Ân(u, β)). (S.38)
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The next lemma spells out the difference between the functions ψh̃,t, φh,t and their piece-

wise constant approximations ψ̄h̃,t, φ̄h,t. This lemma is in analogy with Lemma A.4 of
Groeneboom et al. (2010).

Lemma S10. Suppose that Assumptions 4.1 to 4.6 hold. Then we have

|ψh̃,t(u)− ψ̄h̃,t(u)| . |λ̂n(u, β)− λ0(u, β)|1{|t− u| ≤ h̃}
h̃2

, (S.39)

and

|φh,t(u)− φ̄h,t(u)| . |λ̂n(u, β)− λ0(u, β)|1{|t− u| ≤ h}
h3

. (S.40)

An immediate consequence of Lemma S10 is the characterization of some negligible terms
in Lemma S11, which in turn will be used in the proof of Lemma S12. Recall that T is
the support of ε trimmed from the right tail at come given τU as in Tsiatis (1990).

Lemma S11. Suppose that Assumptions Assumptions 4.1 to 4.6 hold. Then we have∫
(ψh̃,t − ψ̄h̃,t(u))(λ̂n(u, β)− λ0(u, β))dP = op(log2 n× n−2/5), (S.41)

and ∫
(φh,t − φ̄h,t(u))(λ̂n(u, β)− λ0(u, β))dP = op(log2 n× n−2/7), (S.42)

uniformly over t ∈ T , β ∈ B.

Proof of Lemma S11: We only prove the second claim to avoid repetition. We apply
(S.40) in Lemma S10 and the Cauchy-Schwarz inequality to obtain:∫

(φh,t − φ̄h,t(u))(λ̂n(u, β)− λ0(u, β))dP

. h−3
∫
u[∈t−h,t+h]

(λ̂n(u, β)− λ0(u, β))2dP

. h−3+1/2 ‖ λ̂n(u, β)− λ0(u, β) ‖2= Op(n
5/14−2/3 log2 n) = op(log2 n× n−2/7),

which leads to the desired result. �

Now we state and prove the key lemma concerning the rate of convergence of
˙̂
λn and

λ̃n. The convolution type estimation in (3.16) and (3.20) (of the paper) appear simi-
lar to kernel density estimation. However, the asymptotic analysis is more complicated
(Groeneboom et al., 2010), because λ̂n is not linear, in contrast with the empirical dis-
tribution function.

Lemma S12. Suppose that Assumptions 4.1 to 4.6 hold. Then, for h � n−1/7,

‖ ˙̂
λn(t− x′β, β)− λ̇0(t− x′β, β) ‖= Op

(
n−2/7 log2 n

)
. (S.43)

Moreover, for h̃ � n−1/5,

‖ λ̃n(t− x′β, β)− λ0(t− x′β, β) ‖= Op

(
n−2/5 log2 n

)
. (S.44)
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Proof of Lemma S12: We only prove (S.43) which is in fact the harder one. The
deterministic bias term can be easily dealt with based on standard kernel smoothing
arguments:

sup
β,t

∣∣∣∣∫ Kh(t− u)dλ0(u, β)− λ0(t, β)

∣∣∣∣ = O(h2) = O(n−2/7).

When it comes to the stochastic part, we rely on the representation in (S.42) to obtain∫
Kh(t− (y − x′β))d(λ̂n − λ0)(y − x′β, β) =

∫
φh,t[λ̂n(y − x′β, β)− λ0(y − x′β, β)]dP

=

∫
φ̄h,t(λ̂n(y − x′β, β)− λ0(y − x′β, β))dP

+

∫
(φh,t − φ̄h,t)(λ̂n(y − x′β, β)− λ0(y − x′β, β))dP ≡ I1n + I2n.

The second term I2n in the last equality is of a negligible order Op(log n × n−2/3) as
shown in Lemma S11.

Given the fact that λ̂n(y − x′β, β) is the greatest convex majorant of the cumulative
sum diagram and the function φ̄h,t is constant on the same intervals where the NPMLE
remains constant, we get∫

φ̄h,t

[
λ̂n(v − x′β, β)− 1{εβ ≤ v − x′β, δ = 1}

D
(0)
n (v − x′β, β)

]
dPn(v, x, δ) = 0, (S.45)

see equation (11.81) on [page 348] of Groeneboom and Jongbloed (2014). Therefore, we
insert (S.45) into I1n:

I1n =

∫
φ̄h,t(λ̂n(y − x′β, β)− λ0(y − x′β, β))dP

−
∫
φ̄h,t

[
λ̂n(y − x′β, β)− 1{εβ ≤ y − x′β, δ = 1}

D
(0)
n (y − x′β, β)

]
dPn

= −
∫
φ̄h,t

(
λ̂n(y − x′β, β)− 1{εβ ≤ y − x′β, δ = 1}

D(0)(y − x′β, β)

)
d(Pn − P )

+

∫
φ̄h,t1{εβ ≤ y − x′β, δ = 1}

[
1

D
(0)
n (y − x′β, β)

− 1

D(0)(y − x′β, β)

]
dPn

≡ J1n + J2n. (S.46)

In the above decomposition, we have made use of the fact that

λ0(y − x′β, β)d(y − x′β) =
dN(y − x′β, β)

D(0)(y − x′β, β)
,

which leads to

λ0(y − x′β, β)dP =
1{εβ ≤ y − x′β, δ = 1}

D(0)(y − x′β, β)
dP.
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The analysis of J2n proceeds as follows

J2n =

∫
φ̄h,t1{εβ ≤ y − x′β, δ = 1}

[
1

D
(0)
n (y − x′β, β)

− 1

D(0)(y − x′β, β)

]
d(Pn − P )

+

∫
φ̄h,t1{εβ ≤ y − x′β, δ = 1}

[
1

D
(0)
n (y − x′β, β)

− 1

D(0)(y − x′β, β)

]
dP

≡ J (a)
2n + J

(b)
2n . (S.47)

We prove in Lemma S14 that

J
(a)
2n = op(n

−2/7 log2 n), and J
(b)
2n = Op(n

−1/2 × h−1) = Op(n
−5/14).

Referring to the leading term J1n, we get

−J1n =

∫
φ̄h,t

(
λ0(y − x′β, β)− 1{εβ ≤ y − x′β, δ = 1}

D(0)(y − x′β, β)

)
d(Pn − P )

+

∫
φ̄h,t

(
λ̂n(y − x′β, β)− λ0(y − x′β, β)

)
d(Pn − P ).

The second term is denoted by Rn term and we prove that it is of smaller order in Lemma
S13. Finally, we utilize Lemma A.7 in Groeneboom et al. (2010) to conclude:∫

φ̄h,t

(
λ0(y − x′β, β)− 1{εβ ≤ y − x′β, δ = 1}

D(0)(y − x′β, β)

)
d(Pn − P )

=

∫
φh,t

(
λ0(y − x′β, β)− 1{εβ ≤ y − x′β, δ = 1}

D(0)(y − x′β, β)

)
d(Pn − P )

+

∫ (
φ̄h,t − φh,t

)(
λ0(y − x′β, β)− 1{εβ ≤ y − x′β, δ = 1}

D(0)(y − x′β, β)

)
d(Pn − P )

= Op

(
n−2/7 log2 n

)
.

The proof of (S.44) is very similar with some notation-wise difference. When we take

h̃ � n−1/5, those smaller order terms as Rn, J
(a)
2n and J

(b)
2n can be shown of order

op(log2 n×n−2/5). Meanwhile, the leading term as in J1n is of order Op(log2 n×n−2/5),
following Lemma A.7 in Groeneboom et al. (2010), mutatis mutandis. �

Compared with the point-wise result in Groeneboom et al. (2010), The result of Lemma
S12 contains extra log2 n terms in the rate because we also need the uniform convergence
over t ∈ T for the argument of the kernel functions. Nevertheless, the obtained rates are
fast enough, i.e., of op(n

−1/4). The following two lemmas characterize a few smaller order
terms in the proof of Lemma S12.

Lemma S13. Suppose that Assumptions 4.1 to 4.6 hold. Then we have the following
characterization

Rn ≡
∫
φ̄h,t

(
λ̂n(y − x′β, β)− λ0(y − x′β, β)

)
d(Pn − P ) = op(log2 n× n−2/7),

uniformly over β ∈ B and t in the support T .

Proof of Lemma S13: We first introduce some notations adapted from Groeneboom
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et al. (2010). Define for

Ct,n(u) =
k(n1/7(t− u)/c)

cp(y, x, δ)
1{t− cn−1/7 ≤ u ≤ t+ cn−1/7}, (S.48)

the function

ξA,B,t,n(u) = Ct,n(A(u))B(u) (S.49)

where t ∈ T , A is an increasing function, and B is a function of bounded variation. And
let

G1,n ≡ {ξA,B,t,n(u) : A ∈ A, B ∈ B, t ∈ T }. (S.50)

Given the result in (S8), for any small γ > 0 we can find finite constant term M1 such
that for all n sufficiently large:

Pr{Υ1,n,M1
} ≡ Pr{sup

u,β
|λ̂n(u, β)− λ(u, β)| ≤M1n

−1/3 log n} ≥ 1− γ/2.

Now for the vanishing sequence νn to be specified later, it is straightforward to arrive at

Pr{|n2/7Rn| > νn} = Pr{|n2/7Rn| > νn ∩Υ1,n,M1
}+ Pr{|n2/7Rn| > νn ∩Υc

1,n,M1
}

≤ ν−1n E|n2/7Rn|1{Υ1,n,M1
}+ γ/2.

Again by (S8), we have

E|n2/7Rn|1{Υ1,n,M1
} ≤ E sup

A∈A,B∈BM1

∣∣∣∣n2/7−1/3 log n

∫
φh,t(A(u))B(u)d(Pn − P )

∣∣∣∣
≤ n4/7−5/6 log nE sup

ξ∈G1,n

∣∣∣∣∫ ξ(u)dGn(u)

∣∣∣∣ .
The rest of the proof is to utilize Theorem 2.14.1 in Van Der Vaart and Wellner (1996) to
bound the expectation in the last display. Following the construction in Groeneboom et al.
(2010), we can select a minimal n−1/7δ/(4M1)-net in A and a minimal δ/(2 ‖ Cn ‖∞)-net
in B. Referring to the part involving the kernel function k(·) indexed by t, we can obtain
a minimal n−1/7δ/(4M1)-net in T given the fact that the functional class is of VC-type
Nolan and Pollard (1987). The number of functions in this net to cover G1,n is bounded
by Mn1/7/δ exp(n1/7/δ), so the entropy integral is bounded above by

J(1,G1,n) . n1/14 log n. (S.51)

Compared with Groeneboom et al. (2010), the uniformity over t ∈ T in the kernel
function brings an extra log n term. The L2-norm of the envelope function is of order
Op(
√
h) = Op(n

−1/14) by standard arguments in kernel smoothing. Thus applying (S.17),
we have

E|Rn| ≤n4/7−5/6 log n× E sup
ξ∈G1,n

∣∣∣∣∫ ξ(u)dGn(u)

∣∣∣∣ . n4/7−5/6 log2 n,

which immediately leads to Rn = op(log2 n× n−2/7). �

Lemma S14. Suppose that Assumptions Assumptions 4.1 to 4.6 hold. Then J
(a)
2n and

J
(b)
2n defined by (S.47) in Appendix B satisfy:

J
(a)
2n = op(log2 n× n−2/7), and J

(b)
2n = Op(n

−1/2 × h−1) = op(n
−5/14),
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uniformly over t ∈ T , β ∈ B.

Proof of Lemma S14: After linearizing 1/D
(0)
n , the first term J

(a)
2n is determined by

R(a)
n ≡

∫
φ̄h,t1{εβ ≤ y − x′β, δ = 1}D

(0)(y − x′β, β)−D(0)
n (y − x′β, β)

D(0)2(y − x′β, β)
d(Pn − P ),

(S.52)

modulo a second order term which is of Op(n
−1h−2). Note that both D

(0)
n and D(0) are

monotonically decreasing functions as defined in (??), hence their difference is a function

of bounded variation. Now it is clear that R
(a)
n can be dealt with in a completely analogous

way as the term Rn in the previous lemma, which leads to R
(a)
n = op(log2 n× n−2/7).

Referring to J
(b)
2n , we get∫

φ̄h,t1{εβ ≤ y − x′β, δ = 1}

[
1

D
(0)
n (y − x′β, β)

− 1

D(0)(y − x′β, β)

]
dP

≤‖ D(0)
n −D(0) ‖∞

∫ ∣∣∣∣∣ φ̄h,t1{εβ ≤ y − x′β, δ = 1}
D

(0)
n (y − x′β, β)D(0)(y − x′β, β)

∣∣∣∣∣ dP
. n−1/2 × h−1 = Op(n

−5/14).

�

S2. AN ADDITIONAL EMPIRICAL APPLICATION

Methadone maintenance is a drug replacement therapy that uses methadone over a pro-
longed period of time as a treatment for heroin addicts. However, hospitals and clinics
often have problems to retain the addicts. Barnett et al. (2000) finds that the median
willing to pay of heroin addicts in Baltimore was much lower than the estimated cost of
the methadone maintenance program. Meinhofer and Witman (2018) discover that the
recent expansion of health insurance in US (Medicaid expansion) substantially increased
admissions to medication-assistant treatment1 for opioid use disorder in outpatient set-
tings while hardly changed admissions to inpatient settings. Here we use the data of an
Australian methadone program (Caplehorn and Bell, 1991) to investigate the retention
time of heroin addicts in methadone maintenance. The data was collected from 238 ad-
dicts who were assigned to one of two public clinics based on their home address between
February 1986 and August 1987. Both clinics serve adjacent areas of Sydney with similar
socioeconomic characteristics. The censoring rate is 37%. In AFT model, we regress the
days in treatment, censored at the end of the study, to the treatment variable is “Clinic”
(taking value 1 or 2 to indicate two clinics that take different overall treatment polices
(Kleinbaum and Klein, 2011), and two other variables “Prison” (that indicates prison
record status) and “Dose” (that records the maximum methadone dose per day in mg).
Estimates of parameters and standard errors are reported in Table S1. All methods sug-
gest that Clinic 2 managed to retain addicts for a substantially longer period of time. The
negative association between the prison record status and retention time is significant
at 5% level for the proposed SMLE methods but insignificant for other methods. The

1The treatment uses methadone, buprenorphine, or naltrexone.
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positive correlation between the maximum daily methadone and the retention time is
highly significant for all methods.

Table S1. AFT model estimates for retention time in methadone maintenance.

Variables
SMLE-u SMLE-s Gehan Sieve

Est. SE Est. SE Est. SE Est. SE
Clinic .521 .121 .458 .124 .510 .203 .629 .178
Prison -.219 .108 -.174 .065 -.304 .158 -.277 .153
Dose .033 .004 .014 .003 .032 .007 .058 .005

Note: The bandwidths for smoothing the estimated hazard rate is 1 × n−1/5 and for smoothing its
derivative is 1× n−1/7.

Figure S1 displays the smoothed estimates of the hazard function of the error term ε
and the hazard of T0 in the retention of addicts data. By the log-concavity assumption on
the error term, its estimated hazard function is increasing, as the left panel shows. The
right panel exhibits that the overall trend of the estimated hazard function is increasing
in the addicts’ retention data. This suggest that the risk of patients dropping out of
the methadone treatment keeps increasing over time, given the prison record status and
maximum daily dose.

Figure S1. Estimated hazard functions of the error term ε (left) and the baseline duration
T0 (right).
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