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Abstract. We propose two simple semiparametric estimation methods for ordered re-

sponse models with an unknown error distribution. The proposed methods do not require

users to choose any tuning parameter and they automatically incorporate the monotonicity

restriction of the unknown distribution function. Fixing finite dimensional parameters in

the model, we construct nonparametric maximum likelihood estimates (NPMLE) for the

error distribution based on the related binary choice data or the entire ordered response

data. We then obtain estimates for finite dimensional parameters based on moment con-

ditions given the estimated distribution function. Our semiparametric approaches deliver

root-n consistent and asymptotically normal estimators of the regression coefficient and

threshold parameter. We also develop valid bootstrap procedures for inference. We ap-

ply our methods to the interdependent durations model in Honoré and de Paula (2010),

where the social interaction effect is directly related to the threshold parameter in the

corresponding ordered response model. The advantages of our methods are borne out in

simulation studies and a real data application to the joint retirement decision of married

couples.
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1. Introduction

We consider the following ordered response model in which the discrete dependent vari-

able Yi is defined by the threshold-crossing rule given covariates Xi, a latent error term εi,

an unknown threshold parameter α0, and a regression coefficient β0:

Yi =


1 if εi ≤ X ′iβ0,

2 if X ′iβ0 < εi ≤ X ′iβ0 + α0,

3 if εi > X ′iβ0 + α0,

(1.1)

for i = 1, · · · , n. We maintain the independence assumption between X and ε and let F0(·)
be the true unknown distribution function of the latent error ε throughout the paper. Given

independent and identically distributed (i.i.d.) observations of (Yi, Xi)
n
i=1, the likelihood

function takes the following form:

(1.2) Ln(α, β, F ) = Πn
i=1

{
F (X ′iβ)∆1i [F (X ′iβ + α)− F (X ′iβ)]

∆2i [1− F (X ′iβ + α)]
∆3i

}
,

where the indicators ∆1i, ∆2i, and ∆3i are defined by ∆1i = I{Yi = 1}, ∆2i = I{Yi = 2},
and ∆3i = 1−∆1i −∆2i for i = 1, · · · , n.

The ordered response model dates back to Aitchison and Silvey (1957) where the error

distribution F is parameterized and is widely used to characterize ordered categorical out-

come in economics, such as consumers’ demand of differentiated products (Prescott and

Visscher, 1977; Shaked and Sutton, 1982), symmetric entry games (Bresnahan and Reis-

s, 1991), schooling choices (Cameron and Heckman, 1998; Cunha, Heckman, and Navarro,

2007), credit/liquidity constraints (Attanasio, Koujianou, and Kyriazidou, 2008; Hajivassil-

iou and Ioannides, 2007) and discrete time (or interval-censored) duration models (Ridder,

1990; Manski and Tamer, 2002). We refer readers to Greene and Hensher (2010) for a

comprehensive review. However, the fully parametric procedure leads to an inconsisten-

t estimate and misleading inference if the parametric model of the error distribution is

misspecified. Flexible semiparametric estimation of (1.1) has been studied by Lee (1992),

Melenberg and Van Soest (1996), Klein and Sherman (2002), Lewbel (2000, 2002), Chen

and Khan (2003) and Coppejans (2007), allowing for an arbitrary error distribution. This

literature can be roughly divided into two categories. The first branch employs either kernel

or sieve based nonparametric estimation of the functional nuisance component as in Klein

and Sherman (2002), Lewbel (2002), Chen and Khan (2003) and Coppejans (2007). The
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implication is that the user has to choose a tuning parameter 1, such as the bandwidth in

kernel smoothing or the number of sieve basis functions, and there is no clear answer about

the optimal choice in this context. Inevitably, this requires a considerable amount of inter-

vention and judgment on the part of practitioners. The second approach, which estimates

the finite dimensional parameter (α0, β0) (but not F0) without tuning parameters, makes

use of the maximum score type estimation (Lee (1992)). 2 Only the consistency result is

available for Lee’s (1992) estimator and it is expected to have a non-standard limiting dis-

tribution with cubic-root convergence rate which also complicates the inference in practice,

not to mention that the maximum score type estimator is very hard to compute. Part of

the aforementioned issues can be alleviated by smoothing the sample criterion function, as

done by Melenberg and Van Soest (1996), which again introduces the kernel bandwidth.

Also, the convergence rate of the smoothed maximum score estimator is slower than the

standard root-n rate (Horowitz, 1992, 2009).

In this paper, we propose two simple semiparametric estimation methods for ordered

response models that are fully automatic and free of any tuning parameter. The result-

ing estimators of the slope coefficient β0 and the threshold α0 are root-n consistent and

asymptotically normal. The first approach, which consists of two stages, starts with the

likelihood function for related binary choice data (∆1i, Xi) for i = 1, · · · , n:

(1.3) L1n(β, F ) = Πn
i=1

{
F (X ′iβ)∆1i [1− F (X ′iβ)]

1−∆1i

}
,

to get our estimated distribution function F̂n(·; β) for any given β following Cosslett (1983).

This is the nonparametric maximum likelihood estimator (NPMLE) in the sense of Kiefer

and Wolfowitz (1956) for the binary choice data. In order to differentiate from the NPMLE

in our second approach, we will refer F̂n as the isotonic estimator throughout the paper.

We then estimate the regression coefficient and threshold parameter sequentially by using

certain moment conditions (or solving estimation equations). In fact, the first stage is

adapted from the tuning-parameter-free method in Groeneboom and Hendrickx (2018) for

binary choice models, whereas in the second stage, we obtain the estimated threshold from

a simple moment condition concerning the binary choice data (∆3i, Xi) for i = 1, · · · , n.

Our second approach directly maximizes the full likelihood in (1.2) for the ordered response

1In Lewbel (2000), under an additional independence assumption between the special regressor and other
covariates (see Assumption A.5’ [p.157] of Lewbel (2000)), one can apply the ordered data estimator
(Lewbel and Schennach, 2007) without tuning parameter. However, in general, Lewbel (2000)’s estimator
needs a kernel or sieve type estimator of the conditional density in its first stage.
2Another possibility is a two-stage rank estimator that combines Cavanagh and Sherman (1998) and Chen
(2002). Because the original focus of these papers are not on the ordered response model, we discuss the
approach in Section 3.3. We thank an anonymous associate editor for suggesting this method in an earlier
submission of the paper to another journal.
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data to obtain the NPMLE F̃n(·;α, β) for any given (α, β). Thereafter, we estimate the

regression coefficient and threshold jointly by using the same moment conditions as in our

two-stage approach. Throughout this paper, we name the first approach the (Isotonic)

two-stage estimation and the second one the (NPMLE-based) joint estimation.

Our estimation approaches have three main appealing features. First, both methods are

free from any tuning parameter, as opposed to Klein and Sherman (2002), Lewbel (2002),

Coppejans (2007), and Melenberg and Van Soest (1996). This is because we estimate the

error distribution F in (1.3) by a well-defined NPMLE (either using the binary choice data

or the ordered response data), which only exploits the shape (monotonicity) restriction. As

a result, the estimator F̂n or F̃n does not rely on any kernel smoothing or sieve penalization.

Second, both estimators of the latent distribution F obtained from our methods are au-

tomatically non-decreasing piece-wise constant functions by construction. In contrast, the

kernel-based approach in Klein and Sherman (2002) may not yield a monotonic estimate

of the latent distribution3 and the sieve estimator in Coppejans (2007) has to incur addi-

tional computation costs by restricting spline coefficients to accommodate monotonicity.

Finally, our approach is easy to implement. The isotonic estimator F̂n(·) is computed using

the pool-adjacent-violators algorithm (PAVA) (see Groeneboom and Jongbloed (2014) for

details), whereas for the NPMLE F̃n(·), we adapt the fast hybrid approach in Wellner and

Zhan (1997) that combines both the E-M algorithm and the iterative greatest convex mino-

rant algorithm. Our two-stage estimation is particularly attractive from the computational

point of view, in the sense that for the given (β̂n, F̂n(·; β̂n)), the estimating equation for the

threshold parameter α is monotonic. In comparison, the second stage of Klein and Sherman

(2002) involves repeating a grid search many times in order to obtain the estimator of the

threshold parameter.4

Our interest in (1.1) stems from a recent application of the interdependent durations

model proposed by Honoré and de Paula (2010). The study of social interaction effects has

received considerable attention in economics literature and we refer readers to Durlauf and

Ioannides (2010) for fast expanding results based primarily on discrete choice models. The

seminal papers of de Paula (2009), Honoré and de Paula (2010) bring strategic interactions

explicitly into the optimal timing decisions of economic agents and greatly extend the scope

of prior static discrete choices models by incorporating the time dimension. It is evident in

de Paula (2009) and Honoré and de Paula (2010) that the social interaction effect captures

notable externality and explains interesting timing coordination behaviors. Furthermore,

3Figure 3 in Section 5.2 plots the estimated CDF of the latent error in a real data example.
4We refer readers to Stewart (2005) about detailed comparisons of existing semi-nonparametric estimators
from their computational aspect.
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the scalar representing the social interaction effect in Honoré and de Paula (2010) is di-

rectly related to the threshold parameter in the resulting ordered response model, which

motivates us to propose the current flexible semiparametric estimation methods. Both the

Monte Carlo simulation and a real data application demonstrate a good performance of our

proposal. We believe that our work makes the Honoré-de Paula model a viable benchmark

for analyzing interdependent durations data. Other applicable examples in economics in-

clude Park and Smith (2008), who study late rushes in market entry after a pioneer develops

a new product; Katz and Shapiro (1986), who examine technology adoption; Hong, Kubik,

and Stein (2004), who model stock market participation; de Paula (2009), who observes

group desertion in the Union Army after the American Civil War; and Honoré and de Paula

(2018), who look at the joint retirement decisions of married couples.

We contribute to the literature in several ways. First, the proposed estimation meth-

ods complement the existing semiparametric approaches in the sense they free applied

researchers from choosing any tuning parameter. Meanwhile, unlike Lee (1992) where only

the consistency result is available for the maximum score type estimator, we establish the

root-n consistency and asymptotic normality for our estimators of the finite dimensional

parameters. Second, from a theoretical perspective, our work contributes to the literature of

(two-stage) semiparametric estimation and inference that involves shape-restricted compo-

nents. In the seminal works of Newey (1994) and Chen, Linton, and Van Keilegom (2003),

general theorems are presented for semiparametric estimators involving some first-stage

nonparametric estimation, in which the linear representation for the directional derivative

of the nonparametric estimate is maintained as a high-level assumption and verified for

sieve or kernel-type estimators under sufficient smoothness restrictions. A distinction of

our paper is that our nonparametric estimators are only piece-wise constant functions with

random jump locations determined by the data. In fact, the crux of our theoretical in-

vestigation is to prove that certain linear functional (or the directional derivative) of the

shape-restricted estimate is asymptotically normal, for which we adapt the recent break-

through made by Groeneboom and Hendrickx (2018) for our two-stage estimation. A close

examination reveals that the proof in Groeneboom and Hendrickx (2018) regarding the

regression coefficient β is easier, as they can utilize an orthogonal (to the nuisance tangent

set) score function to account for the estimation effect of the error distribution implicitly.

This orthogonal direction is well-known for single-index models (Ichimura (1993); Klein and

Spady (1993)). In contrast, we have to explicitly characterize the influence of estimating

the distribution through its linear functional in our two-stage estimation. Third, our joint

estimation provides a new example of utilizing the NPMLE in semiparametric models. It

substantially goes beyond Groeneboom and Hendrickx (2018). In our model, the NPM-

LE making use of information in all three categories lacks an explicit characterization in
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contrast to the binary choice case considered by Groeneboom and Hendrickx (2018). As

a result, determining the asymptotic behavior of its linear functional becomes much more

challenging. Aiming at those challenges, our proofs that make novel use of the empiri-

cal process theory and the characterization of NPMLE for the “interval censoring, case 2

model”5 (Geskus and Groeneboom (1996, 1997, 1999) and Van de Geer (1997)) are also

of independent interest. Therefore, this paper also contributes to the literature of shape-

restricted estimation and inference for semiparametric models (Cosslett, 1983; Groeneboom

and Wellner, 1992; Matzkin, 1991, 1993; Banerjee, Mukherjee, and Mishra, 2009; Groene-

boom, Jongbloed, and Witte, 2010; Groeneboom and Hendrickx, 2017, 2018). Fourth, we

propose bootstrap procedures with general exchangeable weights to facilitate inference, as

the asymptotic variances of our estimators are quite involved. The bootstrap consistency

does not trivially follow from Van Der Vaart and Wellner (1996) or Cheng and Huang

(2010), since the bootstrap is known to fail for the point-wise distribution of the isotonic

estimator or NPMLE (Abrevaya and Huang (2005)). Heuristically speaking, the bootstrap

is valid for the finite dimensional parameter in our model, because the influence of the iso-

tonic estimator or the NPMLE only involves certain linear functional (Huang and Wellner

(1995),Groeneboom and Hendrickx (2017)) whose asymptotic behavior can be mimicked

by the bootstrap. Last but not least, we demonstrate the usefulness of the Honoré-de

Paula model by taking it to the real data based on our proposed estimation and inference

methods. Indeed, it shows the interaction effect between couples is large enough to counter

their age difference in explaining the joint retirement behavior. Considering the continued

interest in modeling social interactions among economists and the level of sophistication of

the Honoré-de Paula model, we believe our empirical illustration is worthwhile.

The rest of our paper is organized as follows. We briefly discuss the connection to the

interdependent durations model in Honoré and de Paula (2010) in Section 2. In Section 3,

we introduce the notation and propose two simple semiparametric estimation methods. In

Section 4, we derive the asymptotic properties of our estimators for the finite dimensional

parameters, proving their consistency and asymptotic normality. Given the complicated

influence functions, we also develop novel bootstrap procedures so that one can easily

formulate the bootstrap confidence sets. Section 5 conducts simulation studies to evaluate

the finite-sample properties of the estimators and also illustrates the proposed methods

using a real dataset. The final section concludes. Proofs of main theorems are in Appendix

A, whereas proofs of technical lemmas are delegated to the supplemental note.

5To clarify the comparisons with Groeneboom and Hendrickx (2018), the binary choice model there is also
known as the “interval censoring, case 1 model”; see Groeneboom and Wellner (1992).
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2. The Interdependent Durations Model

Interactions among economic agents play key roles in characterizing simultaneity of mul-

tiple durations models. This endogenous interaction effect generates interesting synchro-

nization for numerous economic phenomena. Honoré and de Paula (2010) study a game-

theoretic model in which two players respectively decide (T1, T2) as the time of switching

from an initial activity to an alternative activity. The utility flow of the alternative activity

for one player depends on whether the other player has switched or not, which causes an

endogenous interaction effect. The equilibrium of two duration variables (T1, T2) with the

endogenous interaction effect are characterized by

T1 ≡ inf {t1 : φ (X1) Λ (t1) exp [α∗I {T2 ≤ t1}] ≥ ε1} ,(2.1)

T2 ≡ inf {t2 : φ (X2) Λ (t2) exp [α∗I {T1 ≤ t2}] ≥ ε2} ,

where the unknown scalar α∗ captures the social interaction effect. The common Λ(·) is

a deterministic trend function. Each player has his/her own covariate Xj for j = 1, 2 and

(ε1, ε2) are random utility flows from the initial state. Throughout the paper, we focus on

the case where an individual’s switching is complementary to each other, so the interaction

effect α∗ is positive.

In our empirical application, we utilize the model (2.1) to analyze the joint retirement de-

cision of married couples so (T1, T2) represents the retirement timing choices of the couple.

Understanding the retirement mechanism helps to guide the optimal design of employer-

provided and government benefit programs (Gustman and Steinmeier (2000), Gustman and

Steinmeier (2004), An, Christensen, and Gupta (2004), Honoré and de Paula (2018)). Our

focus on the married couple stems from the fact that most people approaching retirement

age are married and a significant portion of them choose to retire at the same time. Empir-

ical studies documenting the joint retirement of couples abound based on different datasets

(Honoré and de Paula (2018)). Standard bivariate mixed proportional hazards models do

not apply to this scenario, because the simultaneous failure (when Pr{T1 = T2} > 0) is

ruled out from the very beginning in those models. In the current context, the complemen-

tary interaction effect is associated with the pension accrual profiles or the complementarity

in leisure time; see Gustman and Steinmeier (2000) for a more detailed discussion.

Despite the sophisticated game structure and presence of multiple equilibria in (2.1),

Honoré and de Paula (2010) prove the identifiability of all model primitives. Moreover,

they point out a close connection with the corresponding ordered responses model, which

directly suggests a natural semiparametric estimation route for the interaction effect. We
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start to define the auxiliary discrete dependent variable:

Y =


1 if T1 < T2,

2 if T1 = T2,

3 otherwise.

Then we parameterize the covariate effect by setting φ(xj) = x′jβ0 for j = 1, 2, as in Honoré

and de Paula (2010). Therefore, one gets

P {Y = 1|X1, X2} = H ((X1 −X2)′β0 − α∗) ,(2.2)

P {Y = 2|X1, X2} = H ((X1 −X2)′β0 + α∗)−H ((X1 −X2)′β0 − α∗) ,

P {Y = 3|X1, X2} = 1−H ((X1 −X2)′β0 + α∗) ,

where H(w) = P{log ε1 − log ε2 ≤ w}. Hence, it is straightforward to observe that (2.2)

corresponds to the semiparametric ordered response model by taking F0(·) = H(· − α∗),
X = (X1 −X2), and α0 = 2× α∗.

Remark 2.1. Note that the ordered response model does not capture all model primitives

in the original interdependent durations model, in particular the common deterministic

trend function Λ(·) is missing. However, the constructive identification in Theorem 3 of

Honoré and de Paula (2010) suggests a straightforward nonparametric estimate for ln Λ(t),

combined with the key insight of Horowitz (1996). To elaborate on the proposal, let

h(t1, t2;x1, x2) ≡ Pr{T1 ≤ t1, T2 > t2|X1 = x1, X2 = x2} for t1 < t2,

then the proof of Theorem 3 in Honoré and de Paula (2010) states6 that

(2.3)
∂ ln Λ(t1)

∂t1
= β0k

∂h/∂t1
∂h/∂x1k

.

Thus, one can adopt the estimator defined by equation (2.4) in Horowitz (1996) by plugging

in some nonparametric kernel estimator for the partial derivative of h(t1, t2;x1, x2). Given

that the theoretical properties follow largely from Horowitz (1996) and Λ(t) does not directly

enter the resulting ordered response model, we will not focus on the issue.

3. Simple Semiparametric Estimation

Throughout the paper, we work with the i.i.d. data (Yi, Xi) for i = 1, ..., n. It is

convenient to introduce the indicators ∆1i, ∆2i, and ∆3i defined by ∆1i = I{Yi = 1} and

6Note that in our setup, the covariate effects are parameterized by φ(x) = exp(x′β0). Hence, the ratio
∂φ/∂x1k

φ(x1)
defined in Theorem 3 of Honoré and de Paula (2010) is always equal to β0k in our specification.
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∆2i = I{Yi = 2}, and ∆3i = 1−∆1i−∆2i for i = 1, · · · , n. Let K denote the dimensionality

of covariates X and write β0 ≡ (β01, β02, ..., β0K)′. Note that the regression coefficient β0 is

only identified up to some scale normalization for an unspecified F0 (see Klein and Sherman

(2002)). Without loss of generalization, we normalize β01 = 1.

We use the standard empirical process notations as follows. For a function f(·) of a

random vector Z = (Y,X) that follows distribution P , we let Pf =
∫
f(z)dP (z),Pnf =

n−1
∑n

i=1 f(Zi), and Gnf = n1/2 (Pn − P ) f . Function f can be replaced by a random

function z 7→ f̂n(z;Z1, · · · , Zn). Therefore, P f̂n =
∫
f(z;Z1, · · · , Zn)dP (z), Pnf̂n =

n−1
∑n

i=1 f(Zi;Z1, · · · , Zn) and Gnf̂n = n1/2 (Pn − P ) f̂n; see Nan and Wellner (2013). Let

η = (θ, F (·; θ)) be the unknown parameter containing both finite dimensional parameter

θ ≡ (α, β′)′ and the distribution function F . Furthermore, we consider α ∈ A, β ∈ B, and

F ∈ F , where A ⊂ R+, B ⊂ RK , and F is the class of distribution functions. The distance

between two parameter values (η1, η2) is defined in terms of the following metric

d (η1, η2) = |θ1 − θ2|+ ‖F1 (·; θ1)− F2 (·; θ2)‖

where |·| is the standard Euclidean distance, and ‖·‖ is some norm for the class of distribu-

tion functions. We work with the L∞−norm related to our two-stage estimation and the

L2− norm regarding our joint estimation for technical convenience.

3.1. Two-stage Semiparametric Estimation

Our two-stage estimation procedure is inspired by Klein and Sherman (2002) and Lewbel

(2002) in the sense that we obtain estimated distribution function from the related binary

choice data (∆1i, Xi) and (∆3i, Xi). Unlike Klein and Sherman (2002) who resort to the

kernel estimator in Klein and Spady (1993) or Lewbel (2002) who requires a preliminary

nonparametric estimation of certain conditional mean function and integration over covari-

ates’ values, we adapt the important breakthrough by Groeneboom and Hendrickx (2018)

to analyze ordered response models. As it will become self-evident in the sequel, our pro-

cedure delivers root-n consistent and asymptotically normal estimators of the regression

coefficient β0 and threshold parameter α0, which does not require tuning parameters.

We now describe the two-stage semiparametric estimation for the ordered response model:

Stage 1(i). For any β, we compute the NPMLE for F (·) based on the binary choice data:

(3.1) F̂n(·; β) = arg max
F

n∑
i=1

[∆1i logF (X ′iβ) + (1−∆1i) log(1− F (X ′iβ))] .
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Stage 1(ii). Given F̂n(·; β), our estimator β̂n for the regression coefficient is the zero-

crossing point of the estimation equation:

(3.2)
1

n

n∑
i=1

Xi

[
∆1i − F̂n(X ′iβ̂n; β̂n)

]
= 0.

Stage 2. Given β̂n and F̂n(·; β̂n), we estimate α0 by α̂n, which is the zero-crossing point

of the estimation equation Ψn

(
α̂n, β̂n, F̂n(·; β̂n)

)
= 0, where

(3.3) Ψn

(
α, β̂n, F̂n(·; β̂n)

)
=

1

n

n∑
i=1

[
1−∆3i − F̂n(X ′iβ̂n + α; β̂n)

]
.

Here we provide a heuristic discussion of each step. The NPMLE in Stage 1 and its char-

acterization date back to Ayer, Brunk, Ewing, Reid, and Silverman (1955) in analyzing

the current status data (see Groeneboom and Wellner (1992)). The corresponding opti-

mization problem is well-defined and it generates a piece-wise constant function F̂n(·; β),

which can be characterized as follows: fixing the parameter β, we consider the values of

U
(β)
1 = X ′1β, · · · , U

(β)
n = X ′nβ. Let U

(β)
(1) ≤ · · · ≤ U

(β)
(n) be the order statistics with corre-

sponding indicators ∆
(β)
1,(i) for i = 1, · · · , n. Thereafter, F̂n(·; β) is equal to the left derivative

of the convex minorant of a cumulative sum diagram consisting of the points (0, 0) and(
i,

i∑
j=1

∆
(β)
1,(j)

)
for i = 1, · · · , n; see Groeneboom and Hendrickx (2018). Within the context of binary

choice models, it is utilized by Cosslett (1983) to define the tuning-parameter-free profile

likelihood estimator. However, only consistency results 7 are available for Cosslett’s estima-

tor given the challenge that the estimated error distribution is neither linear nor smooth.

The key to develop a root-n consistent and asymptotic normal estimator for β0 while main-

taining the tuning-parameter-free feature is the Z-estimator adapted from Groeneboom and

Hendrickx (2018). Modulo the estimated latent distribution function, one makes use of the

population-level moment condition

(3.4) E[X(∆1 − F0(X ′β0))] = 0,

7The general result in Tanaka (2008) implies the convergence rate of Cosslett’s estimator is cubic root for
the slope coefficient.
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and plug in the NPMLE F̂n(·; β) in the sample analog.8 In the same spirit, the last step of

our procedure is based on a very simple moment condition:

(3.5) E[(1−∆3 − F0(X ′β0 + α0))] = 0.

Given preliminary estimators F̂n(·; β̂n) and β̂n, the estimating equation Ψn is monotone

with respect to α, which greatly lowers the computational burden. We emphasize that

it is necessary to use both sets of moment conditions for the sake of consistency. The

naive approach where one uses only the binary choice data (∆2i, Xi) and then directly

applies Groeneboom and Hendrickx (2018) does not work because the intercept α0 and

the distribution function F0 cannot be separately identified in the binary choice data alone

(Ichimura (1993)). We focus on the just-identified case to be coherent with Groeneboom

and Hendrickx (2018). In principle, a GMM type estimation with over-identified moment

conditions could be developed.

As F̂n(·; β̂n) is a piece-wise constant function, the estimating equations in our procedure

may not hold exactly. Therefore, we adopt the following definition from Groeneboom and

Hendrickx (2018):

Definition 3.1 (Zero-crossing). We say that β∗ is a zero-crossing of a function C : B 7→ R
if each open neighborhood of β∗ contains points β1, β2 ∈ B such that C(β1)C(β2) ≤ 0. We

say that a function C̃ : B 7→ RK crosses zero at point β∗ if β∗ is a zero-crossing in each

component C̃j for j = 1, · · · , K.

Figure 1 depicts the typical shape of our estimating function Ψn

(
α, β̂n, F̂n(·; β̂n)

)
. The

data generating process is the interdependent duration model described in Section 5.1. The

true value of α is 1. The joint distributions of (ε1, ε2) are exponential (Panel (a)) and log-

normal (Panel (b)), respectively. It is obvious that these two depicted estimating functions

Ψn

(
α, β̂n, F̂n(·; β̂n)

)
are decreasing in α and the zero crossings are very close to the 1; i.e.,

they are about 0.980 in Panel (a) and 0.868 in Panel (b).

3.2. Joint Semiparametric Estimation

One might be wondering whether it is possible to develop a similar tuning-parameter-free

estimation approach utilizing the entire ordered response data directly, instead of breaking

it to two sets of binary choice data. Indeed this is feasible and will be termed as the joint

estimation method. The starting point is the following result that guarantees the existence

8The main improvement made by Groeneboom and Hendrickx (2018) over Cosslett (1983) to restore stan-
dard distributional theory for regression coefficient is that one does not need the error’s density function
in the moment condition (3.4). In contrast, one has to handle the error density in the likelihood based

estimation appearing in the score function, whereas the NPMLE F̂n(·;β) itself is not differentiable.
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Figure 1. The estimating function Ψn

(
α, β̂n, F̂n(·; β̂n)

)
when the joint

distribution of (ε1, ε2) in the interdependent duration model in Section 2 is
exponential or log-normal. α0 = 1, sample size = 500.

(a). Exponential (b). Log-normal

of the NPMLE for the ordered response model given any (α, β) in the parameter space.

The proof can be found in Chapter 4 of Groeneboom and Jongbloed (2014).

Lemma 3.1. Given α and β, the NPMLE for F̃n(·;α, β) exists based on the ordered re-

sponse data; i.e.,

F̃n(·;α, β)

= arg max
F

n∑
i=1

[∆1i logF (X ′iβ) + ∆2i log (F (X ′iβ + α)− F (X ′iβ)) + ∆3i log (1− F (X ′iβ + α))]

is well defined. Moreover, the NPMLE is a (sub-)distribution function and piece-wise con-

stant with jumps over a subset of {X ′iβ,X ′iβ + α : i = 1, 2, ..., n}.

Now we are ready to present the joint semiparametric method that makes use of informa-

tion in all three categories to estimate the distribution function and returns the estimates

for the regression coefficient and the threshold parameter simultaneously.

Joint Estimation. For any α and β, we employ the NPMLE for F̃n(·;α, β) based on the

ordered response data. Given F̃n(·;α, β) from the previous step, we define (α̃n, β̃n) which

are the zero-crossing points of the estimation equations simultaneously:

(3.6) Φn(α̃n, β̃n) = 0,



13

where

Φn(α, β) ≡

 1
n

∑n
i=1Xi

[
∆1i − F̃n(X ′iβ;α, β)

]
1
n

∑n
i=1

[
1−∆3i − F̃n(X ′iβ + α;α, β)

] .
The NPMLE F̃n(·;α, β) can be computed by the iterative convex minorant algorithm in

Groeneboom and Wellner (1992) and Groeneboom and Jongbloed (2014). The number of

mass points is smaller than 2n, because for any i with ∆2i = 0, either X ′iβ+α (if ∆1i = 1) or

X ′iβ (if ∆3i = 1) does not enter the log-likelihood function. Denote the remaining elements

in the set {X ′iβ,X ′iβ+α : i = 1, 2, ..., n} as U
(α,β)
j , j = 1, 2, ..., p. Partition the observations

into the following four groups:

I1 = {1 ≤ j ≤ p : U
(α,β)
j = X ′iβ for some i and ∆1i = 1},

I2l = {1 ≤ j ≤ p : U
(α,β)
j = X ′iβ for some i and ∆2i = 1},

I2r = {1 ≤ j ≤ p : U
(α,β)
j = X ′iβ + α for some i and ∆2i = 1},

I3 = {1 ≤ j ≤ p : U
(α,β)
j = X ′iβ + α for some i and ∆3i = 1}.

And then set k be a function that maps any index from I2l to I2r for a given observation

i with ∆2i = 1: k(j) = m if U
(α,β)
j = X ′iβ and U

(α,β)
m = X ′iβ + α, for ∆2i = 1. Let

v(t) ≡ (v
(t)
1 , ..., v

(t)
p )′ be the output from the t-th iteration, then v(t+1) is the left derivative

of the cumulative sum diagram consisting of the following points:

P0 = (0, 0), Pj =

(
j∑
i=1

Hj(v
(t)),

j∑
i=1

v
(t)
i Hj(v

(t))−Gj(v
(t))

)
, j = 1, ..., p,

where

Gj(v) =


−v−1

j if j ∈ I1,

(vk(j) − vj)−1 if j ∈ I2l,

−(vj − vk−1(j))
−1 if j ∈ I2r,

(1− vj)−1 if j ∈ I3,

and

Hj(v) =


v−2
j if j ∈ I1,

(vk(j) − vj)−2 if j ∈ I2l,

(vj − vk−1(j))
−2 if j ∈ I2r,

(1− vj)−2 if j ∈ I3.

The initial value can be set as v(0) = (1/p, 2/p, ..., 1)′, which assigns the same probability

mass on each jump point. The iterative convex minorant algorithm can be implemented
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using the R package Icens (Gentleman and Vandal, 2018). R package Icens also provides

a function for a faster hybrid algorithm proposed by Wellner and Zhan (1997), which

combines the iterative convex minorant and the E-M algorithm.

Figure 2 plots the estimating functions with respect to α for fixed β = β̃n. The designs

follow the ones presented in Section 5.1, with β0 = (1, β02, β03). Therefore, (3.6) contains

three estimating equations. In Figure 2, the estimate α̃n is the value where the three

estimating functions cross zero, which equals to 0.890 and 1.036 for the exponential and

log-normal design, respectively. Compared with the two-stage estimator, there are mainly

two complications. First, all estimating equations are not guaranteed to be monotone with

respect to α. Second, we need to solve for the joint zero-crossing point for all equations

simultaneously. Nevertheless, as proved in our Theorem 4.3, the zero crossing points exist

with probability 1.

Figure 2. The estimating functions Ψn

(
α, β̂n, F̂n(·; β̂n)

)
when the joint

distribution of (ε1, ε2) in the interdependent duration model in Section 2 is
exponential or log-normal. α0 = 1, sample size =500.

(a). Exponential (b). Log-normal

3.3. Comparisons with Alternative Methods

This section describes some alternative semiparametric estimators for the model (1.1),

and also discusses the general ordered response models with more than three categories.
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Remark 3.1 (The kernel-based estimator in Klein and Sherman (2002)). In the first stage

of Klein and Sherman (2002)’s approach, the regression coefficient β0 is estimated by max-

imizing the following quasi-likelihood function with respect to β:

n∑
i=1

τ̂(Xi)
{
I{Yi = 1} ln P̂1(X ′iβ) + I{Yi = 2} ln[P̂2(X ′iβ)− P̂1(X ′iβ)] + I{Yi = 3} ln[1− P̂2(X ′iβ)]

}
,

where P̂j(X
′
iβ) is the kernel estimator of the conditional probability Pj(X

′
iβ) ≡ Pr(Yi ≤

j|X ′iβ) for fixed β in Klein and Spady (1993), j = 1, 2, and the trimming function τ̂(x) =

I
{
|x| ≤ ξ̂

}
with ξ̂ being certain sample quantile of |Xi|’s. In the second stage, the threshold

parameter α0 is estimated through the shift restriction P2(X ′iβ0 − α0) = P1(X ′iβ0), which

leads to

α̂ =
1

I{i ∈ T }
∑
i∈T

(V̂i − Ṽi2),(3.7)

where V̂i ≡ X ′iβ̂ and Ṽi2 solves P̂2(Ṽi2) = P̂1(V̂i)
9 for each i ∈ T , T =

{
V̂i : P̂L ≤ P̂1(V̂i) ≤ P̂U

}
and (P̂L, P̂U) are determined by the pth and (1−p)th quantile of an a collection of estimated

probabilities (see Klein and Sherman (2002), p671). Besides the choice of bandwidth for

P̂j(X
′
iβ), the K-S approach also requires two trimming parameters. Our simulations studies

find that the performance of the threshold parameter estimator α̂ is particularly sensitive to

the trimming parameter p used for constructing the target set T . (See Table 2 in Section

5.1.) Note that the purpose of the trimming is to exclude individual estimators V̂i− Ṽi2 with

poor performance.

Remark 3.2 (The smoothed maximum-score estimator). Horowitz (1992) initially pro-

posed the smoothed maximum-score (SMS) estimator for the binary choice model and Me-

lenberg and Van Soest (1996) have extended it to the ordered response model. The estimator

in Melenberg and Van Soest (1996) can also be viewed as smoothed version of Lee (1992)’s

maximum-score estimator for the ordered response model. Under the median independence

condition, the SMS approach estimates (α0, β
′
0)′ by maximizing the smoothed objective func-

tion:

max
α,β′

n∑
i=1

(2I{Yi ≥ 2} − 1)K

(
−X ′iβ
h

)
+ (2I{Yi ≥ 3} − 1)K

(
−X ′iβ − α

h

)
,

where K(v) is an integral kernel function satisfying limv→+∞K(v) = 1 and limv→−∞K(v) =

0.10 Users need to specify the bandwidth h. The convergence rate of SMS is slower than

9In its actual implementation, Ṽi2 is the point for which P̂2(Ṽi2) is closest to P̂1(V̂i) over a grid constructed
following the procedure given in [p.671-672] of Klein and Sherman (2002).
10Horowitz (1992) adopts K(v) = 0.5 + (105/64)[v − (5/3)v3 + (7/5)v5 − (3/7)v7] if |v| ≤ 1; K(v) = 0 if
v < −1 and K(v) = 1 if v > 1.
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the root-n rate, even with the MSE-optimal bandwidth of order n−1/5; see Section 4.3.3 of

Horowitz (2009) for a detailed discussion. Simulation results in Section 5.1 find that SMS

yields larger mean square errors and longer confidence intervals than other methods.

Remark 3.3 (A two-stage rank estimator). An alternative tuning-parameter-free method is

the two-stage rank estimation combining Cavanagh and Sherman (1998) and Chen (2002)11.

The original focus of Chen (2002) is the unknown link function in the transformation model;

however, his method is also applicable to the ordered response model. Specifically, one can

estimate β0 following Cavanagh and Sherman (1998) first by

max
β

n∑
i=1

YiRn(−X ′iβ),(3.8)

where Rn(−X ′iβ) denotes the rank of −X ′iβ. The second stage adapts the key idea of Chen

(2002) that given P (Yi = 1|Xi) = F0(X ′iβ0) and P (Yi ≤ 2|Xi) = F0(X ′iβ0 + α0), one has

E [I{Yi = 1} − I{Yj ≤ 2}|Xi, Xj] ≥ 0 whenever X ′iβ0 −X ′jβ0 ≥ α0 for i 6= j.

Therefore, a maximum rank correlation estimator for the threshold is

α̂ = arg max
α

1

n(n− 1)

n∑
i=1

∑
j 6=i

(I{Yi = 1} − I{Yj ≤ 2}) I{X ′iβ −X ′jβ ≥ α}.

Our simulation studies demonstrate remarkable performances of this two-stage rank esti-

mator for estimating the finite dimensional parameters, especially when the sample size is

relatively large. However, unlike our two estimators or the Klein-Sherman estimator, the

rank estimator itself does not provide a nonparametric estimate for the error distribution.

In our empirical application, the error distribution function is still of practical interest,

since it captures the (log-)difference of two heterogeneity terms for wives and husbands.

3.4. Models with Four or More Categories

Here we discuss the general ordered response model where the dependent variable can

take more than three values such as in empirical applications of Cameron and Heckman

11This approach credits to an anonymous associate editor in an early submission of the paper to another
journal. Given the connection is not obvious, we expand our discussion here.
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(1998) or Klein and Sherman (2002). Formally, the dependent variable is determined by

Yi =



1 if εi ≤ X ′iβ0,

2 if X ′iβ0 < εi ≤ X ′iβ0 + α0,1,

3 if X ′iβ0 + α0,1 < εi ≤ X ′iβ0 + α0,2,
...

J + 1 if εi > X ′iβ0 + α0,J−1,

(3.9)

for i = 1, · · · , n and J ≥ 3, with a set of ordered thresholds (α0,1, · · · , α0,J−1). In the

same spirit of Lewbel (2002), our two-stage estimator in Section 3.1 directly applies to

this setting. In the first stage, the binary data (I(Yi > 1), Xi)
n
i=1 is employed to obtain

β̂n and F̂n(·; β̂n) in the same manner as (3.1) and (3.2). And then one utilizes the data

(I(Yi > j + 1), Xi)
n
i=1 in the second stage to estimate α0,j through the following estimation

equation of αj for j = 1, · · · , J − 1,

(3.10) Ψj,n

(
αj, β̂n, F̂n(·; β̂n)

)
=

1

n

n∑
i=1

[
1− I(Yi > j + 1)− F̂n(X ′iβ̂n + αj; β̂n)

]
.

The large sample properties of resulting estimates (α̂n,1, · · · , α̂n,J−1) are stated in our Corol-

lary (4.2).

Our joint estimator in Section 3.2 is also applicable. From a computational point of

view, if there are more than three categories, only the interval corresponding to the chosen

category and its adjacent ones will be relevant for the computation of the NPMLE; the

other intervals can be discarded (Groeneboom (2014), p2093). Therefore, the construction

of the NPMLE is almost the same as the case with three categories. The consistency of

the NPMLE for multiple categories is shown in Schick and Yu (2000). However, the rate

of convergence or the asymptotic properties of its linear functionals remain completely un-

known. We leave this challenging issue to the future research. Thereafter, we recommend

practitioners use the methods in Klein and Sherman (2002)12 or Coppejans (2007), if ef-

ficiency is the main concern. Since our empirical application in Section 5.2 involves three

categories, we will focus on the setup specified by (1.1).

12The K-S estimator is also semiparametrically efficient under additional periodicity restriction on the
covariates; see Section 3.3 of Coppejans (2007).
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4. Asymptotic Results

This section consists of three subsections. The first two subsections provide root-n con-

sistency and asymptotic normality results for Isotonic two-stage estimator and NPMLE-

based joint estimator, respectively. The last subsection provides bootstrap procedures for

the construction of confidence intervals.

4.1. Asymptotic Properties of The Two-stage Estimator

A key challenge in our proof related to the two-stage estimation is to pin down the asymp-

totic contribution of F̂n(·, β̂n) to the finite dimensional parameter using the characterization

of the isotonic estimator and empirical process theory. For the slope coefficients β0, we re-

ly on the recent breakthrough made by Groeneboom and Hendrickx (2018). Building on

that, we need substantial more efforts to determine the influence function for the thresh-

old parameter α0, as the unknown parameters in the estimating equation are substituted

with the estimates in Groeneboom and Hendrickx (2018). The proof in Groeneboom and

Hendrickx (2018) regarding the regression coefficient is easier because they can utilize an

orthogonal (to the nuisance tangent set) score function to incorporate the estimation effect

of the error distribution implicitly. This orthogonal direction is well-known for single-index

models (Ichimura (1993) and Klein and Spady (1993)), as it involves the conditional mean

of covariates X given the true linear index U = X ′β0. In contrast, we have to explicitly

characterize the influence of estimating the distribution through its linear functional in our

two-stage estimation.

We introduce additional notations to present our theoretical results. Following Groene-

boom and Hendrickx (2018), it is straightforward to observe that the first-stage isotonic

estimator F̂n(·; β) provides an estimate of

(4.1) F0(u; β) ≡ P
{

∆
(β)
1i |U

(β)
i = u

}
=

∫
F0(u+ x′(β0 − β))fX|X′β(x|X ′β = u)dx,

In the sequel, we let F0(u) = F0(u; β0). The density function of the random variable X ′β

is denoted by g0(u; β). Denote the true linear index by Ui = X ′iβ0 for i = 1, · · · , n, and

let g0(u) be the probability density function of the random variable U . The following two

terms appear in the Taylor expansion in our asymptotic analysis:

Vα0 =
∂

∂α
E[F0(X ′β0 + α)]

∣∣
α=α0

,(4.2)

Vβ0 =
∂

∂β
E[F0(X ′β + α0; β)]

∣∣
β=β0

,(4.3)
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whereas

(4.4) Hβ0 = E
[
f0(X ′β0) {X − E[X|X ′β0]}⊗2

]
denotes the Hessian matrix for β̂n in Groeneboom and Hendrickx (2018).

The following regularity conditions are adapted from Ichimura (1993); Klein and Spady

(1993); Klein and Sherman (2002); Groeneboom and Hendrickx (2018). The independence

between ε and X in Condition 1 is an standard assumption used by the kernel or sieve based

estimators (Klein and Sherman, 2002; Coppejans, 2007) and the rank estimator described

in Remark 3.3 (Cavanagh and Sherman, 1998; Chen, 2002). In comparison, the (smoothed)

maximum score estimator of Lee (1992) or Melenberg and Van Soest (1996) only requires the

median independence, yet it delivers a convergence rate of the finite-dimensional parameter

that is slower than root-n. Root-n consistent estimators that permits general forms of

heteroskedasticity have been proposed by Lewbel (2002) and Chen and Khan (2003) which

again relies on kernel smoothing. The large support of the linear index X ′β0 in Condition

1 is necessary. The assumption imposed here only requires the support to include the

positive infinity, whereas the support can be bounded away from the negative infinity (so

the linear index could follow exponential or gamma-type distribution). This condition is

made to exclude the non-identifiable example in Manski (1985) and to ensure that the

component ψF0 in the influence function of our Theorem 4.2 is well-defined. Considering

the interdependent durations model, the large support condition is also assumed in Honoré

and de Paula (2010) to achieve point identification.

Condition 1. We have i.i.d. data (Yi, Xi) for i = 1, · · · , n. The covariates X and latent

error ε are independent. The support of X is not contained in any proper linear subspace

of RK
. The support of X ′β0 contains +∞.

Condition 2. The true regression parameter β0 belongs to the interior of B where B is a

compact set in RK . The true threshold parameter α0 ∈ A ≡ (αL, αU), where [αL, αU ] is a

compact interval on the positive real line.

Condition 3. The function F0(·; β) has a strictly positive continuous derivative, which

stays away from zero for all β ∈ B. Moreover, the function F0(u; β) is twice continuously

differentiable on the interior of the support for β ∈ B.

Condition 4. The density function of random variable X ′β denoted by g0(u; β) is contin-

uous and also stays away from zero for all β ∈ B.

Condition 5. The density g0(u; β) and conditional expectations E[X|X ′β = u] andE[XX ′|X ′β =

u] are twice continuously differentiable w.r.t.u. The functions β 7→ g0(u; β), β 7→ E[X|X ′β =
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u], and β 7→ E[XX ′|X ′β = u] are continuous functions for u in the definition domain and

all β ∈ B.

Condition 6. The matrix Hβ0 is of full rank and the scalar Vα0 6= 0, where Vα0 =
∫
f0(u+

α0)g0(u)du.

The asymptotic analysis of β̂n and F̂n(·; β) follows directly from Theorem 4.1 on [p.1426]

of Groeneboom and Hendrickx (2018). Specifically, the linear representation for β̂n is as

follows:

(4.5) n1/2Hβ0

(
β̂n − β0

)
=

∫
{x− E[X|X ′β0 = x′β0]} {F0(x′β0)− δ1} dGn + op(1).

Thus, β̂n is root-n consistent and asymptotically normal with the influence function equal

to H−1
β0
φβ0 , where

(4.6) φβ0(Zi) = (Xi − E[Xi|Ui])(F0(Ui)−∆1i).

Regarding the latent error distribution, one gets from Lemma 5.9 on [p.120] of Groeneboom

and Wellner (1992) or Lemma 3.1 on [p.1423] of Groeneboom and Hendrickx (2018) the

following uniform convergence at the cubic root rate (modulo the logarithm factor):

(4.7) ‖ F̂n(u; β̂n)− F0(u) ‖∞= Op(log n× n−1/3);

The large sample property of α̂n is more complicated and it is our main focus. We

consider the following random map

(4.8) Ψn(α) =
1

n

n∑
i=1

[
1−∆3i − F̂n(X ′iβ̂n + α; β̂n)

]
and its probability limit

(4.9) Ψ(α) =

∫
[1−∆3 − F0(X ′β0 + α)] dP.

First, we prove the uniform convergence by the Glivenko-Cantelli Theorem (Van Der Vaart

and Wellner (1996)), which leads to supα |Ψn(α)−Ψ(α)| → 0. We then verify the population

criterion function has a unique root and the sample analog has a zero-crossing point with

probability tending to 1.

Theorem 4.1 (Consistency of the two-stage estimator). Suppose Conditions (1)-(6) hold.

Then we have: (i). β̂n obtained from equation (3.2) is a consistent estimator of β0; (ii).

for all large n, the unique zero-crossing α̂n of Ψn(α) exists with a probability tending to one

and it is a consistent estimator of α0.
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Because our estimation procedure belongs to the general Z-estimation with bundled

parameter and nuisance functional components, we prove the root-n rate and asymptotic

normality of α̂n following the route in Nan and Wellner (2013). Unlike the examples in

Nan and Wellner (2013), which have nuisance nonparametric components either estimable

with root-n rate or subject to certain smoothness restriction, the nonparametric part is

estimated utilizing shape restriction in our model. The crux of our proof is to determine

the asymptotic contribution of the estimated latent distribution to the threshold parameter.

Theorem 4.2 (Asymptotic normality of the two-stage estiamtor). Under Conditions (1)-

(6), the following linear representations hold:

√
n
(
β̂n − β0

)
= Gn [ψβ0(Zi)] + op(1), and(4.10)

√
n (α̂n − α0) = V −1

α0
Gn [(ψ0 + ψF0 + Vβ0ψβ0)(Zi)] + op(1),(4.11)

where

ψβ0(Zi) = H−1
β0

(Xi − E[Xi|Ui])(F0(Ui)−∆1i),(4.12)

ψ0(Zi) = [1− F0(Ui + α0)−∆3i] ,(4.13)

ψF0(Zi) =
g0(Ui − α0)[∆1 − F0(Ui)]

g0(Ui)
.(4.14)

Therefore,

√
n
(
β̂n − β0

)
⇒ N(0,Ωβ0), and(4.15)

√
n (α̂n − α0) ⇒ V −1

α0
× N(0,Ωα0),(4.16)

where Ωβ0 = E
[
ψβ0ψ

′
β0

]
and Ωα0 = E [(ψ0 + ψF0 + Vβ0ψβ0)

2].

Intuitively speaking, the linear representation for the threshold estimator α̂n involves

three parts: the oracle influence function ψ0 given true β0 and F0, the effect from the

estimation of F0 encoded in ψF0 , and the effect from the estimation of β0 collected in ψβ0 .

Despite the fact that we have a closed-form representation here, a brute-force estimation of

the asymptotic variance involves some density function such as g0(·) or f0(·). This motivates

us to propose a simple bootstrap approach that circumvents the obstacle in Section 4.3.

Given the linear representation for both α̂n and β̂n, an immediate corollary is the joint

asymptotic normality for θ̂n = (α̂n, β̂
′
n)′ as follows. To simplify the presentation, we abuse

the notation somewhat by setting ψα0 ≡ V −1
α0

(ψ0 + ψF0 + Vβ0ψβ0).

Corollary 4.1. Under Conditions (1)-(6), we have

(4.17)
√
n
(
θ̂n − θ0

)
⇒ N(0,Σ0),
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where the asymptotic covariance matrix is Σ0 = E[(ψα0 , ψ
′
β0

)′(ψα0 , ψ
′
β0

)].

Remark 4.1. In the seminal works of Newey (1994) and Chen, Linton, and Van Keilegom

(2003), general theorems are presented for semiparametric estimators concerning the root-n

consistency and asymptotic normality, which involves some first-stage nonparametric esti-

mation. Maintained as a high-level assumption, Chen, Linton, and Van Keilegom (2003)

assume that

(4.18)
√
n
[
Sn(θ0) + Γ(θ0)[F̂n − F0]

]
⇒ N(0,Σ),

for some finite positive definite matrix Σ without specifying how the nonparametric compo-

nent F0 is estimated in the first stage. In (4.18), Sn(θ0) stands for the (normalized) oracle

score function for the parametric part, whereas the direction derivative Γ(θ0)[F̂n − F0] en-

codes the estimation effect of the nonparametric component. In an earlier celebrated paper,

Newey (1994) also directly assumes the following linear representation holds

(4.19)
√
n
[
Γ(θ0)[F̂n − F0]

]
=

1√
n

n∑
i=1

ψi + op(1),

for some zero-mean and square integrable random variables ψi. The illustrative examples

in Newey (1994) or Chen, Linton, and Van Keilegom (2003) are about nonparametric

components with sufficient smoothness restrictions and estimated by sieve or kernel-type

estimators. The crux of our theoretical investigation is to show that certain linear functional

of the shape restricted nonparametric estimator is asymptotically normal. The verification

of (4.18) or (4.19) in our context requires considerable more efforts than those examples in

the aforementioned works mainly due to the fact that the isotonic estimator or the NPMLE

is neither smooth nor linear.

Considering models where the ordered responses have more than three categories as

described by the thresholding rules in (3.9), we collect the finite dimensional parameter in

θJ0 = (α0,1, α0,2...α0,J−1, β
′)′ and denote the two-stage semiparametric estimator in Section

3.4 by θ̂Jn = (α̂n,1, α̂n,2...α̂n,J−1, β̂
′
n)′ with J ≥ 3. Furthermore, we introduce the following

notations:

ψ0,j(Zi) = [F0(Ui + α0,j)− I(Yi ≤ j + 1)] ,

Vα0,j
=

∂

∂α
E[F0(X ′β0 + α)]

∣∣
α=α0,j

,

ψα0,j
≡ V −1

α0,j
(ψ0,j + ψF0 + Vβ0ψβ0),

for j = 1, 2, ..., J − 1. The next corollary presents the asymptotic normality of θ̂Jn . Its

proof follows from a straightforward modification of our Theorem 4.2 up to some notation

changes, and thus is omitted.
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Corollary 4.2. Suppose Conditions (1)-(6) hold and Vα0,j
6= 0 for all j. Then we have

(4.20)
√
n
(
θ̂Jn − θJ0

)
⇒ N(0,ΣJ

0 ),

where

ΣJ
0 = E[(ψα0,1 , ψα0,2 , ..., ψα0,J−1

ψ′β0)
′(ψα0,1 , ψα0,2 , ..., ψα0,J−1

, ψ′β0)].

4.2. Asymptotic Properties of The Joint Estimator

The asymptotic analysis of our joint estimation method is more involved. There are

mainly two differences compared with the results related to the two-stage estimation. First,

both α̃n and β̃n are determined in the second stage estimation together, so the calculation

of the Hessian matrix is done with respect to both components; see Lemma S2.11 in the

supplemntal note. More importantly, it is much more challenging to pin down the influence

function capturing the effect of the NPMLE F̃n (expressed via some linear functional of

F̃n). Unlike the binary choice case where the isotonic estimator can be characterized as a

left-continuous slope of the greatest convex minorant of certain cusum diagram, such an

explicit interpretation is lacking for NPMLE using entire ordered response data. Thus,

we seek an alternative characterization that builds on a sequence of research by Van de

Geer (1997) and Geskus and Groeneboom (1996, 1997, 1999) for the interval censored data

(case 2) and combines it with an analytic argument using empirical process theory as in

Groeneboom and Hendrickx (2018).

First, we set up necessary notations. Denote the probability limit of the NPMLE as

(4.21) F0(u;α, β) ≡ E[∆1|X ′β + α = u] = E[∆1|U = u− α].

Consider the following matrix

H(α, β) ≡

(
E[−X ∂

∂α
F (X ′β;α, β)] E[−X ∂

∂β′
F (X ′β;α, β)]

E[− ∂
∂α
F (X ′β + α;α, β)] E[− ∂

∂β′
F (X ′β + α;α, β)]

)
,

which leads to the Hessian matrix of our estimator when evaluated at the true parameter

values (α0, β0):

H0 ≡ H(α0, β0) = −

(
E[(X − E[X|X ′β0])f0(X ′β0)] E[(X − E[X|X ′β0])⊗2f0(X ′β0)]

E[f0(X ′β0 + α0)] E[(X − E[X|X ′β0])′f0(X ′β0 + α0)]

)
.

The fundamental theory related to the linear (or more generally differentiable) functional

is given by Van der Vaart (1991). We also refer readers to Chapter 3 in Groeneboom

and Wellner (1992) and Chapter 25 in Van Der Vaart (1998) for more comprehensive

discussions. We draw on Geskus and Groeneboom (1996, 1997, 1999) where the authors

develop a systematic approach to characterize the linear functional of NPMLE for the
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interval censored data (case 2). For that purpose, we define c1(u) = −E[X|u]F0(u)f0(u),

c3(u) = −F0(u+α0)f0(u), and c(u) = (c′1(u), c3(u))′. Consider the linear functional κ(F0) =∫
c(v)dF0(v) and its canonical (with zero mean) gradient

(4.22) κ̃F0(u) = c(u)−
∫
c(v)dF0(v).

The canonical gradient is also known as the “efficient influence function” and is supposed to

belong to the space L0
2(F ); i.e., the space of square integrable functions satisfying

∫
adF =

0, Groeneboom and Wellner (1992). A key component in determining the asymptotic

property of (α̃n, β̃n) is κ(F̃n(·;α0, β0)); i.e., the linear functional of the NPMLE when the

finite dimensional parameter is set to be its true value. The influence function of the latter

one crucially depends on whether there is a unique element φF satisfying

(4.23) L∗φF = κ̃F ,

given the differentiability of κ̃F in the sense of Van der Vaart (1991), where L∗ denotes the

adjoint operator of L defined in equation (4.24). We further denote its derivative by κ̃′F .

To present the solution φF0 for the true distribution function, we denote x0 = x′β0 and

the support of it as [CL, CU ]; see Coppejans (2007). For any function a in the tangent set,

the score operator for the nonparametric component is

(4.24) L[a](x0, δ1, δ2) =
δ1

∫ x0
CL
adF

F (x0)
+

δ2

∫ x0+α0

x0
adF

F (x0 + α0)− F (x0)
−

(1− δ1 − δ2)
∫ CU

x0+α0
adF

1− F (x0 + α0)

For any function b(u, δ1, δ2), we also have the adjoint operator L∗ specified as follows:

(4.25)

L∗[b](x0) =

∫ CU

x0

b(u, 1, 0)g0(u)du+

∫ x0

x0−α
b(u, 0, 1)g0(u)du+

∫ x0−α

CL

b(u, 0, 0)g0(u)du.

Let φF (u) ≡
∫ u
CL
a(v)dF (v) denote the integrated score function, then we have

(4.26)

L∗L[a](x0) =

∫ CU

x0

φ(u)

F (u)
g0(u)du+

∫ x0

x0−α0

φ(u+ α0)− φ(u)

F (u+ α0)− F (u)
g0(u)du+

∫ x0−α0

CL

φ(u+ α0)

1− F (u+ α0)
g0(u)du.

Then one can solve the equation and obtain

L[a](u, δ1, δ2) =− δ1 ((1− F0(u))ω(u) + (1− F0(u+ α0)ω(u+ α0))

+ δ2 (F0(u)ω(u)− (1− F0(u+ α0)ω(u+ α0))

+ (1− δ1 − δ2) (F0(u)ω(u) + F0(u+ α0)ω(u+ α0)) ,
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where ω(u) ≡ c′(u)
g0(u)

. Moreover, the influence function takes the following form (see Example

4.2 of Van de Geer (1997)):

(4.27)

φF0(u) =

−F0(u) ((1− F0(u))ω(u) + (1− F0(u+ α0)ω(u+ α0)) , for CL ≤ u ≤ α0

(1− F0(u)) (F0(u)ω(u) + F0(u− α0)ω(u− α0)) , for α0 ≤ u ≤ CU .

We need one more set of assumptions to guarantee the asymptotic normality for the

linear functional of NPMLE; see [p.31] in Van de Geer (1997).

Condition 7. We assume ω(u) is uniformly bounded for all u in the support. Moreover,

the following ratios are all uniformly bounded:

sup
u

∣∣∣∣ω′(u)

f0(u)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ ω′(u)

f0(u+ α0)

∣∣∣∣ ≤ c,

sup
u

∣∣∣∣ω′(u+ α0)

f0(u)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ω′(u+ α0)

f0(u+ α0)

∣∣∣∣ ≤ c,

sup
u

∣∣∣∣f0(u+ α0)

f0(u)

∣∣∣∣ ≤ c, sup
u

∣∣∣∣ f0(u)

f0(u+ α0)

∣∣∣∣ ≤ c,

for some universal finite constant c. Also, for any α in the parameter space, we assume

F0(u+ α)− F0(u) is uniformly bounded away from zero for any u in the support.

Denote the stacked estimator for the finite dimensional parameter as θ̃n ≡ (α̃n, β̃
′
n)′ and

the true unknown parameter as θ0 ≡ (α0, β
′
0)′.

Theorem 4.3 (Consistency of the joint estimator). Under our Conditions (1)-(7), we have

for all large n, the zero-crossing θ̃n for Ψn

(
θ̃n

)
exists with a probability tending to one and

is a consistent estimator of θ0.

Theorem 4.4 (Asymptotic normality of the joint estimator). Under our Conditions (1)-

(7), we have

(4.28)
√
n
(
θ̃n − θ0

)
⇒ N(0, Σ̃0),

where Σ̃0 = H−1
0 E[(φ′0 + φ′F0

)′(φ′0 + φ′F0
)]H−1

0 , φF0 defined in equation (4.27) and

φ0 =

(
[∆1i − F0(X ′iβ0)]Xi

∆3i − 1 + F0(X ′iβ0 + α0)

)
.

Remark 4.2. It is known that the NPMLE is indeed more efficient than the isotonic

estimator only using binary choices data in the sense that both n1/3(F̃n(t;α0, β0) − F0(t))

and n1/3(F̂n(t; β0) − F0(t)) converge to the Chernoff distribution yet with different scaling

constant terms. Specifically, the NPMLE has a smaller asymptotic variance than the one
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associated with the isotonic estimator; see Exercise 4.27 in Chapter 4 of Groeneboom and

Jongbloed (2014). Our simulation results also confirm this theoretical claim.

Remark 4.3. Apropos of the asymptotic covariance matrices for finite dimensional param-

eters, the comparison between our two-stage and joint estimation is not obvious analytically,

as both influence functions are very complicated. As the joint approach simultaneously es-

timates α0 and β0, one may naturally expect that it works better. This is supported by our

simulation studies. Overall, performances of both estimators are reliable and not subject to

the sensitivity of tuning parameter selection.

Remark 4.4. Referring to the semiparametric efficient score function in Coppejans (2007),

it is inevitable to use either the kernel or sieve approach, because it involves the density

function of latent error. Embedding shape restriction, we suggest an efficient estimation

procedure making use of the maximum smoothed likelihood estimator (MSLE) in Groene-

boom (2014), which can also be viewed as the generalization of Klein and Spady (1993) to

the ordered response data. Consider a kernel density function k(·) and kbn(·) ≡ k(·/bn)/bn

with the bandwidth equal to bn. Define h̄jn(t; β) = 1
n

∑n
i=1 kbn(X ′iβ, t)∆ji, for j = 1, 2, 3.

The MSLE F̄nbn(t;α, β) is now defined by maximizing∫
h̄1n(t; β) logF (t)dt+

∫
h̄3n(t+α; β) log[1−F (t+α)]dt+

∫
h̄2n(t; β) log[F (t+α)−F (t)]dt.

Thereafter, the estimators (ᾱn, β̄n) for the finite dimensional parameters are defined by

maximizing the profile (smoothed) likelihood function:

(4.29) (ᾱn, β̄n) = arg max
α,β

Ln(F̄nbn(·;α, β);α, β).

We conjecture that this (kernel) smoothed maximum likelihood procedure delivers semi-

parametric efficient estimators for (α0, β0), based on the results in Coppejans (2007) and

Groeneboom (2014). One notable advantage over the sieve method in Coppejans (2007) is

that the estimated distribution is monotone by construction, whereas Coppejans (2007) has

to impose additional restrictions on spline coefficients to accommodate the monotonicity.

Remark 4.5. For some empirical questions, one might be interested in the marginal effect

associated with the ordered response model. In this case, one needs the joint normality

of the estimated finite dimensional parameter and the distribution function evaluated at a

certain point. However, the point-wise asymptotic distribution of the isotonic estimator F̂n

or the NPMLE F̃n is not normal. Instead, they both converge to the Chernoff distribution13

with the cubic root rate. In order to restore the asymptotic normality and improve the rate

13A random variable is said to follow the Chernoff distribution if it is the last time where standard two-
sided Brownian motion minus the parabola t2 reaches its maximum; see Section 3.9 in Groeneboom and
Jongbloed (2014).
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of convergence for the distribution function, one could resort to the smoothed maximum

likelihood estimator (SMLE) or the maximum smoothed likelihood estimator (MSLE) in

Groeneboom, Jongbloed, and Witte (2010) and Groeneboom (2014).

4.3. Bootstrap Inference

In this part, we propose corresponding novel bootstrap procedures for conducting infer-

ence for our semiparametric estimators. In a closely related paper for binary choice data,

Groeneboom and Hendrickx (2017) first prove the bootstrap validity for the regression co-

efficient using Efron’s multinomial weights (Efron (1979)) based on the shape-restricted

estimation in Groeneboom and Hendrickx (2018). We establish the bootstrap consistency

with more general exchangeable bootstrap weights (Mni)
n
i=1. Commonly used exchangeable

bootstrap schemes include (i) Nonparametric bootstrap in which the bootstrap weight-

s Mn = (Mn1, ...,Mnn)
′

follow the multinomial distribution Mult (n, (n−1, ..., n−1)); (ii)

Bayesian bootstrap in which the bootstrap weights Mni = ωi/ (
∑n

i=1 ωi) for 1 ≤ i ≤ n

and ωi as the unit exponential distribution (Rubin, 1981); and (iii) Delete-h jackknives

in which the bootstrap weights are generated from permuting the deterministic weights

wni = n/ (n− h) for 1 ≤ i ≤ n − h and let Mnj = wnRn(j) where Rn is a random per-

mutation uniformly over {1, ..., n} (Wu, 1990). All these bootstrap procedures satisfy the

following Condition 8. A detailed verification can be found in Cheng and Huang (2010).

Condition 8. (i) The vector Mn = (Mn1, ...,Mnn)
′

is exchangeable for all n.

(ii) Mni ≥ 0 for all n, i and
∑n

i=1Mni = n for all n.

(iii) For some positive constant C < ∞, lim supn→∞ ‖Mn1‖2,1 ≤ C, where ‖Mn1‖2,1 =∫∞
0

√
Pr (Mn1 ≥ u)du.

(iv) limλ→∞ lim supn→∞ supt≥λ t
2 Pr (Mn1 > t) = 0.

(v) (1/n)
∑n

i=1 (Mni − 1)2 →p 1.

In analog with the notations from the empirical process theory, we let P∗nf = n−1
∑n

i=1Mnif (Zi),

and G∗nf = n−1/2
∑n

i=1 (Mni − 1) f (Zi). Before stating the theoretical results for the boot-

strapped quantities, we should be explicit about the underlying probability space and source

of randomness. There are two sources of randomness coming from the observed data and

the bootstrap weight Mn. The following set of definitions and notations are adapted from

Cheng and Huang (2010). We have the product probability space

(Z∞ ×M,A∞ × Ω, PZM)

for the joint randomness from observed data and bootstrap weights. Furthermore, the

bootstrap weights are independent from the sample observations, i.e., PZM = PZ × PM .
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Definition 4.1. For a real-valued random variable ∆n, we define (i) ∆n = oPM
(1) , in

PZ−probability if for any ε, δ > 0

PZ
{
PM |Z (|∆n| > ε) > δ

}
→ 0.

(ii) We define ∆n = OPM
(1) , in PZ−probability if for any δ > 0 there exists a C s.t.

PZ
{
PM |Z (|∆n| > C) > δ

}
→ 0.

4.3.1. Bootstrap Two-stage Estimation. We now describe our bootstrap estimator for

the regression coefficients and threshold parameter. Note that bootstrap for regression

coefficients in the binary choice model can be found in Groeneboom and Hendrickx (2017).

Stage 1(i)*. First of all, the bootstrap MLE F̂ ∗n(·, β) is computed using the weighted

cumulative sum diagram formed by the point (0, 0) and(
i∑

j=1

M
(β)
n(j),

i∑
j=1

M
(β)
n(j)∆

(β)
1,(j)

)
,

where M
(β)
n(i) corresponds to the weight attached to U

(β)
(i) .

Stage 1(ii)*. The bootstrap estimator of the regression coefficient β̂∗n is defined as the

zero-crossing point of the following estimating equations:

(4.30)
1

n

n∑
i=1

MniXi

[
∆1i − F̂ ∗n(X ′iβ̂

∗
n; β̂∗n)

]
= 0.

Stage 2*. Finally, the bootstrap version α̂∗n is then defined as the zero-crossing point of

the following estimating equation:

(4.31)
1

n

n∑
i=1

Mni

[
1−∆3i − F̂ ∗n(X ′iβ̂

∗
n + α̂∗n; β̂∗n)

]
= 0.

Given Condition 8, the bootstrap estimate F̂ ∗n is a step-wise monotone function. There-

fore, the estimating equation for α̂∗n is again monotone so that the computational advantage

of our approach is amplified along the bootstrap replications. Regarding the theoretical un-

derpinning, one could easily prove that α̂∗n → α0 conditional on observations (Z1, · · · , Zn)

almost surely. We characterize the conditional weak limit for α̂∗n in the next theorem. For

completeness, we also state the result for β̂∗n, which has been established by Groeneboom

and Hendrickx (2017)[p3464-3465].

Theorem 4.5 (Bootstrap validity for the two-stage estimator). Suppose Conditions (1)-

(6) and Condition (8) hold. For the bootstrap estimators β̂∗n and α̂∗n with exchange weights
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(Mn1, ...,Mnn), we have that∣∣∣β̂∗n − β̂n∣∣∣ = OPM

(
n−1/2

)
, and |α̂∗n − α̂n| = OPM

(
n−1/2

)
,

in PZ−probability. Furthermore,

√
n
(
β̂∗n − β̂n

)
⇒ N(0,Ωβ0),(4.32)

√
n (α̂∗n − α̂n) ⇒ V −1

α0
× N(0,Ωα0),(4.33)

conditional on observations (Z1, · · · , Zn) almost surely.

A direct consequence of the above theorem is the validity of percentile bootstrap con-

fidence interval (see Cheng and Huang (2010)). The lower p-th quantile of the bootstrap

distribution of α̂∗n is the quantity τ ∗n,α(p) satisfying τ ∗n,α(p) ≡ inf{τ : PM |Z(α̂∗n ≤ τ) ≥ p}.
Similar, we can define τ ∗n,βk(p) ≡ inf{τ : PM |Z(β̂∗n,k ≤ τ) ≥ p} for the kth component of β̂∗n,

k = 2, ..., K. Then the percentile-type bootstrap confidence intervals can be constructed as

(4.34) B̂Cα (p) =
[
τ ∗n,α(p/2), τ ∗n,α(1− p/2)

]
,

and

(4.35) B̂Cβ,k (p) =
[
τ ∗n,βk(p/2), τ ∗n,βk(1− p/2)

]
, for k = 2, · · · , K.

Corollary 4.3. Suppose Conditions (1)-(8) hold, then we have

(4.36) PZM

(
α0 ∈ B̂Cα (p)

)
→ 1− p,

and

(4.37) PZM

(
β0k ∈ B̂Cβ,k (p)

)
→ 1− p, for k = 2, · · · , K,

as n→∞.

4.3.2. Bootstrap Joint Estimation. Now we describe the bootstrap inference for our

joint estimation approach.

Joint Estimation*. For any α and β, we can derive the bootstrap NPMLE for F (·;α, β)

based on the ordered response data:

F̃ ∗n(·;α, β)

= arg max
F

n∑
i=1

Mni [∆1i logF (X ′iβ) + ∆2i log (F (X ′iβ + α)− F (X ′iβ)) + ∆3i log (1− F (X ′iβ + α))] ,
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which exists. Given F̃ ∗n(·;α, β) from the previous step, we define (α̃∗n, β̃
∗
n) which are the

zero-crossing points of the estimating equations simultaneously:

1

n

n∑
i=1

MniXi

[
∆1i − F̃ ∗n(X ′iβ̃n; α̃n, β̃n)

]
= 0,(4.38)

1

n

n∑
i=1

Mni

[
1−∆3i − F̃ ∗n(X ′iβ̃n + α̃n; α̃n, β̃n)

]
= 0.

Theorem 4.6 (Bootstrap validity for the joint estimator). Suppose Conditions (1)-8) hold.

For the bootstrap estimator θ̃∗n with exchange weights (Mn1, ...,Mnn), we have that∣∣∣θ̃∗n − θ̃n∣∣∣ = OPM

(
n−1/2

)
,

in PZ−probability. Moreover, we have

(4.39)
√
n
(
θ̃∗n − θ̃n

)
⇒ N(0, Σ̃0),

conditional on observations (Z1, · · · , Zn), almost surely.

Similarly as the two-stage estimator (part 4.3.1), we can construct the percentile-type

bootstrap confidence intervals B̃Cα and B̃Cβ,k of the regression coefficients and threshold

parameter for the joint estimator. The coverage properties are summarized in the following

corollary.

Corollary 4.4. Suppose Conditions (1)-(8) hold, then we have

(4.40) PZM

(
α0 ∈ B̃Cα (p)

)
→ 1− p,

and

(4.41) PZM

(
β0k ∈ B̃Cβ,k (p)

)
→ 1− p, for k = 2, · · · , K,

as n→∞.

5. Numerical Results

In this section, we conduct Monte Carlo simulations to evaluate the finite sample per-

formances of our proposals and other semiparametric approaches described in Section 3.3.

The simulation designs follow the interdependent duration model of Honoré and de Paula

(2010). We also illustrate the usefulness of all these methods by applying them to the

Danish joint retirement data in An, Christensen, and Gupta (2004).
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5.1. Monte Carlo Studies

Recall the model setup in Section 2 of the interdependent durations model proposed

by Honoré and de Paula (2010): two players respectively decide (T1, T2) as the time be-

tween switching from an initial activity to an alternative activity. The utility flows from

the initial activity for players 1 and 2 are random variables (ε1, ε2) with a joint CDF

G(·, ·). The utility flow from the alternative activity at time t gives player j an amount

ta exp(X ′jβ0) exp[α∗I {Tk ≤ t}] for j, k ∈ {1, 2} and j 6= k. Here we consider individuals

with covariates denoted by Xj = (1, X1j, X2j, X3j, X4), where the last coordinate is as-

sumed to be the same for both players, and write the corresponding regression coefficient

as β0 = (β0o, β01, β02, β03, β04)′.

The main complication of the model is the characterization of (T1, T2) as the Nash equi-

librium outcomes. Based on the value of ε1/ε2, the equilibrium (T1, T2) can be categorized

into three cases: T1 < T2, T1 = T2, and T1 > T2. Specifically, Honoré and de Paula

(2010) characterize the equilibrium (T1, T2) as follows: if ε1/ε2 < exp[(X1 − X2)′β0 − α∗],
then T1 = [ε1/ exp(X ′1β0)]1/a and T2 = [ε2/ exp(X ′2β0 + α∗)]1/a; if exp[(X1 −X2)′β0 − α∗] <
ε1/ε2 < exp[(X1 −X2)′β0 + α∗], then T1 = T2 and can take any value between[

max

{[
ε1/e

(X′1β0+α∗)
]1/a

,
[
ε2/e

(X′2β0+α∗)
]1/a

}
,min

{[
ε1/e

(X′1β0)
]1/a

,
[
ε2/e

(X′2β0)
]1/a

}]
;

if ε1/ε2 > exp[(X1−X2)′β0+α∗], then T1 = [ε1/ exp(X ′1β0 + α∗)]1/a and T2 = [ε2/ exp(X ′2β0)]1/a.

When exp[(X1−X2)′β0−α∗] < ε1/ε2 < exp[(X1−X2)′β0+α∗], the model produces multiple

equilibria so that in case of the simultaneous failure (T1 = T2) there exists a range of possi-

ble values. However, the equilibrium selection rule does not matter here when it comes to

estimating the regression coefficient β0 or the interaction effect α∗, because the conditional

probability P {T1 = T2|X1, X2} remains the same. Therefore, one can transform the above

interdependent durations model into the ordered responses model with Y = 1 if T1 < T2,

Y = 2 if T1 = T2 and Y = 3 if T1 > T2. Then the conditional probabilities become:

P {Y ≤ 1|X1, X2} = H (β01(X11 −X12) + β02(X21 −X22) + β03(X31 −X32)− α∗) ,(5.1)

P {Y ≤ 2|X1, X2} = H (β01(X11 −X12) + β02(X21 −X22) + β03(X31 −X32) + α∗) ,(5.2)

where H(w) = P{log(ε1/ε2) ≤ w}. Furthermore, H(·) is an arbitrary distribution function

if no assumption is made regarding (ε1, ε2). Note that the common effect from covariates’ ef-

fect β0o+β04X4 is differenced out here. Also, we normalize β01 = 1 for the identification pur-

pose. In our simulations, we set (a, βo, β1, β02, β03, β04, α
∗) = (1.35,−4.00, 1.00, 1.00, 1.00, 0.50, 1.00).

We consider two cases for G(·, ·): the joint distribution of two independent unit exponen-

tial variables or two independent log normal variables. Variables (X11, X12, X31, X32, X4)
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are independent standard normal random variables and (X21, X22) are independent χ2(1)

random variables (normalized to a mean zero and variance one). Our Monte-Carlo study

involves 1,000 simulations of the foregoing models. The sample sizes are n = 250, 500, and

750.

Table 1 presents the finite sample bias, root of the mean square error (RMSE), and medi-

an absolute deviation (MAE) of our Isotonic two-stage estimator and NPMLE-based joint

estimator for (β02, β03, α
∗). The error terms (ε1, ε2) are two independent unit exponential or

log-normal random variables. The initial values of (β2, β3, α
∗)′ are set as (0.2, 0.2, 0.1)′ and

the estimating equations are solved using R package BB. As a comparison, Table 2 presents

the finite sample results for three alternative semiparametric estimators described in Re-

marks 3.1 to 3.3; i.e., Klein and Sherman (2002)’s kernel-based approach (K-S), Melenberg

and Van Soest (1996)’s smoothed maximum score estimator (SMS), and the rank estimator

combining Cavanagh and Sherman (1998) and Chen (2002). For the K-S approach, the

bandwidths (including a bandwidth, a pilot bandwidth, and a smoothing parameter in the

damping function) are chosen following the guidelines of Klein and Sherman (2002).14 The

trimming parameter ξ̂ for the quasi-likelihood function is set to be the 0.95th sample quan-

tile of the Euclidean norm of covariates. We consider two values for trimming proportion

for the target set: p = 0.05 and p = 0.20. For the SMS approach, we experiment two

bandwidths n−1/4 and n−1/5. The former reduces bias by under-smoothing and the later

is chosen according to the MSE-optimal rate. Table 3 examines point-wise estimates for

the error distribution function H(·) evaluated at 5 equally spaced points in the support of

(log ε1 − log ε2).

We first evaluate the performances of our two-stage estimator and joint estimator. Table

1 shows that bias, RMSE, and MAE for both estimators decrease when the sample size

increases. NPMLE-based joint estimation yields smaller bias than the two-stage estimator.

The RMSE’s are close between two estimators, with the two-stage estimator slightly better

for (β02, β03)′ and the joint estimator slightly better for α∗. The lower variability of two-

stage estimator is likely due to its computational simplicity. As shown in Figures 1 and

2, the estimating functions exhibit smoother variation in the two-stage procedure than in

the joint procedure. Nevertheless, joint estimator still yields smaller RMSE for α∗ due

to the fact that it utilizes all the information across three categories by the simultaneous

estimation. Also, the MAE of the joint estimator is slightly smaller than that of two-

stage estimator. In terms of the nonparametric estimate of H(·), Table 3 shows that the

14The value δ in Klein and Sherman (2002) p669 is set to 1/6. The rate of bandwidth α is set as the middle
point of the allowed range ((3 + δ)/20, 1/6), see p670. The rate of the pilot bandwidth follows Lemma 5A
of Klein and Sherman (2002). Finally, ε in the damping function is set as the middle point of the allowed
range (0, 1/40− δ/20), see p670.
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NPMLE-based approach performs better in general than the isotonic estimator, especially

for H(1) and H(2). This confirms the efficiency gain from utilizing additional information

that differentiates the category with Y = 2 and the one with Y = 3 (see Remark 4.2).

We further compare our two-stage and joint estimator with other semiparametric es-

timators as reported in Table 2. The K-S estimator for α∗ is sensitive to the trimming

parameter p, which decides the subset used for averaging individual estimators (see Re-

mark 3.1). It is clear that p = 0.05 does not sufficiently exclude individual estimators that

perform poorly and thus leads to unreliable estimate for α∗. The performance for α∗ greatly

improves when p = 0.20; however, the RMSE and MAE are still larger than our two-stage

and joint estimators. The SMS estimator has significantly larger RMSE and MAE than all

other methods. This can not be fully explained by the under-smoothing bandwidth n−1/4.

When bandwidth takes the MSE-optimal rate n−1/5, the RMSE and MAE of SMS decrease,

yet still larger than other methods. The rank estimator described in Remark 3.3 exhibits

remarkable finite sample performances in our simulations. It yields the smallest bias for

regression coefficients and threshold parameter among all methods. However, referring to

the RMSE for α∗, our two-stage and joint estimators still have an edge on the rank esti-

mator. In sum, our simulation studies show that the isotonic two-stage estimator and the

NPMLE-based joint estimator perform well and stable. Their tuning-parameter-free ad-

vantage is further enhanced by the robust finite sample performances. Namely, in terms of

the RMSE, they clearly outperform the SMS in all scenarios we considered and are better

than the K-S for most cases. Moreover, our estimators, especially the joint estimator, yield

the smallest RMSE for α∗, which is the parameter of primary interest in the interdependent

durations model.
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Table 1. Finite sample performances of the isotonic two-stage estimator

and the NPMLE-based joint estimator for (β02, β03, α
∗).

(ε1, ε2) Exponential Log-normal

Methods n Bias RMSE MAE Bias RMSE MAE

Two-stage 250 β02 -.0658 .1985 .1448 -.0482 .1701 .1202

β03 -.0692 .1717 .1234 -.0547 .1582 .1199

α∗ -.0663 .1470 .1092 -.0496 .1364 .0982

500 β02 -.0470 .1370 .0937 -.0345 .1255 .0841

β03 -.0485 .1259 .0883 -.0333 .1113 .0798

α∗ -.0476 .1132 .0810 -.0342 .0978 .0715

750 β02 -.0425 .1163 .0822 -.0297 .0980 .0679

β03 -.0423 .1033 .0719 -.0294 .0861 .0607

α∗ -.0376 .0907 .0643 -.0299 .0791 .0556

Joint 250 β02 -.0337 .2079 .1412 -.0211 .1786 .1197

β03 -.0394 .1774 .1258 -.0285 .1647 .1166

α∗ -.0516 .1463 .1031 -.0378 .1357 .0968

500 β02 -.0282 .1372 .0916 -.0184 .1272 .0835

β03 -.0316 .1276 .0889 -.0184 .1120 .0789

α∗ -.0389 .1099 .0758 -.0281 .0953 .0689

750 β02 -.0280 .1190 .0828 -0160 .0998 .0694

β03 -.0300 .1048 .0717 -.0162 .0894 .0623

α∗ -.0322 .0889 .0618 -.0246 .0776 .0542
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Table 2. Finite sample performances of other semiparametric estimators,

described in Remarks 3.1 to 3.3. Trimming parameter p in the K-S approach

is used to exclude individual estimators for α∗ that performs poorly; h is the

bandwidth used in SMS approach.

(ε1, ε2) Exponential Log-normal

Methods n Bias RMSE MAE Bias RMSE MAE

K-S 250 β02 .0374 .2430 .1593 .0267 .1956 .1256

β03 .0373 .1943 .1251 .0201 .1585 .1000

p = .05 α∗ .1568 .2797 .1549 .1647 .2681 .1541

p = .20 α∗ .0697 .2104 .1214 .0570 .1791 .1058

500 β02 .0205 .1435 .0942 .0142 .1258 .0849

β03 .0164 .1267 .0794 .0121 .1075 .0671

p = .05 α∗ .1682 .2501 .1477 .1642 .2232 .1484

p = .20 α∗ .0446 .1405 .0824 .0378 .1160 .0738

750 β02 .0194 .1202 .0825 .0166 .0958 .0655

β03 .0090 .1003 .0622 .0080 .0847 .0563

p = .05 α∗ .1718 .2422 .1452 .1688 .2143 .1507

p = .20 α∗ .0347 .1130 .0680 .0356 .0937 .0593

SMS 250 β02 .0776 .3093 .1658 .0574 .2683 .1419

(h = n−1/4) β03 .0728 .2791 .1645 .0559 .2326 .1359

α∗ .0638 .3046 .1939 .0427 .2648 .1658

500 β02 .0534 .2100 .1310 .0379 .1960 .1193

β03 .0381 .1882 .1138 .0318 .1693 .1094

α∗ .0365 .2152 .1468 .0250 .1847 .1201

750 β02 .0428 .1896 .1111 .0255 .1564 .1057

β03 .0267 .1574 .1001 .0236 .1410 .0869

α∗ .0215 .1823 .1222 .0156 .1638 .1049

(h = n−1/5) 750 β02 .0468 .1823 .1086 .0273 .1419 .0910

β03 .0303 .1449 .0877 .0243 .1277 .0764

α∗ .0273 .1628 .1065 .0174 .1470 .0905

Rank 250 β02 .0108 .2082 .1296 .0111 .1685 .1108

β03 .0112 .1725 .1142 .0118 .1478 .0977

α∗ .0087 .1639 .1103 .0087 .1462 .0905

500 β02 .0160 .1311 .0900 .0090 .1090 .0711

β03 .0137 .1179 .0738 .0094 .0988 .0648

α∗ .0114 .1171 .0750 .0054 .0974 .0651

750 β02 .0071 .1041 .0696 .0073 .0869 .0581

β03 .0042 .0909 .0609 .0056 .0790 .0522

α∗ .0053 .0921 .0580 .0037 .0797 .0513
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Table 3. Finite sample performances of point-wise estimators for the func-

tion H(w), Isotoic estimator uses binary data, NPMLE uses entire ordered

response data.

(ε1, ε2) Exponential Log-normal

Methods n Bias RMSE MAE Bias RMSE MAE

Isotonic 250 H(−2) -.0186 .0578 .0417 -.0223 .0528 .0430

H(−1) -.0053 .0829 .0580 -.0088 .0842 .0602

H(0) .0089 .1043 .0726 .0131 .1014 .0720

H(1) .0294 .1018 .0698 .0296 .1078 .0728

H(2) .0416 .0834 .0673 .0340 .0706 .0785

750 H(−2) -.0091 .0386 .0274 -.0089 .0354 .0260

H(−1) .0003 .0558 .0391 -.0041 .0551 .0359

H(0) .0083 .0682 .0483 .0103 .0714 .0474

H(1) .0154 .0693 .0476 .0137 .0679 .0462

H(2) .0172 .0550 .0380 .0189 .0482 .0368

NPMLE 250 H(−2) -.0084 .0498 .0342 -.0073 .0466 .0328

H(−1) .0053 .0660 .0445 .0052 .0734 .0495

H(0) .0183 .0847 .0571 .0168 .0873 .0611

H(1) .0298 .0823 .0562 .0239 .0872 .0627

H(2) .0216 .0588 .0435 .0190 .0540 .0421

750 H(−2) -.0051 .0335 .0243 -.0032 .0312 .0221

H(−1) .0044 .0469 .0332 .0012 .0449 .0302

H(0) .0094 .0569 .0387 .0412 .0618 .0428

H(1) .0148 .0542 .0367 .0110 .0535 .0372

H(2) .0117 .0393 .0277 .0096 .0337 .0237

K-S 250 H(−2) .0029 .0412 .0279 -.0021 . 0346 .0234

H(−1) .0040 .0574 .0404 .0019 .0561 .0376

H(0) .0004 .0690 .0479 .0075 .0744 .0518

H(1) -.0118 .0688 .0463 -.0131 .0703 .0431

H(2) -.0352 .0683 .0426 -.0425 .0662 .0399

750 H(−2) -.0003 .0240 .0161 -.0014 .0211 .0133

H(−1) .0032 .0337 .0231 .0010 .0343 .0230

H(0) .0041 .0412 .0280 .0081 .0453 .0298

H(1) -.0029 .0440 .0301 -.0042 .0401 .0265

H(2) -.0223 .0411 .0268 -.0300 .0407 .0285
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Table 4 reports the empirical coverage proportion (CP) and the median length (ML) of

the confidence intervals (CIs) based on the nonparametric bootstrap described in Section

4.3, for the our two-stage and the joint estimators. We observe that the coverage propor-

tions of their nonparametric bootstrap based CIs are close to the nominal 95% level. For

the threshold parameter α∗, the CIs of joint estimator has better coverage proportions and

shorter median lengths than the two-stage version. Table 4 also summarizes the nonpara-

metric bootstrap based CIs for other semiparemetric estimators: the K-S, the SMS, and the

rank estimator. The under-smoothing bandwidth n−1/4 is used for the SMS to reduce the

bias in the asymptotic distribution (see Section 4.3.3 of Horowitz (2009)). The trimming

proportion p is set to 0.2 in the K-S estimator. We observe that the SMS exhibits over-

coverage in all scenarios and the median length of CIs are substantially longer than other

methods. The K-S leads to under-coverage for α∗ when the n = 750. The rank estimator

performs well when n = 750; however, it suffers from under-coverage for the regression

coefficients (β02, β03)′ when n = 250 and 500.

Table 4. Coverage proportions of 95% nonparametric bootstrap based con-

fidence intervals, sample size = n, CP = coverage proportion, ML = median

length of the confidence interval, number of bootstrap replications = 200.

(ε1, ε2) Exponential (ε1, ε2) log-normal

n = 250 n = 500 n = 750 n = 250 n = 500 n = 750

Methods CP ML CP ML CP ML CP ML CP ML CP ML

Two-stage β02 .974 .779 .955 .506 .945 .415 .978 .683 .958 .457 .941 .368

β03 .961 .677 .940 .454 .943 .373 .963 .597 .947 .409 .952 .332

α∗ .961 .577 .929 .386 .926 .317 .956 .522 .945 .363 .930 .290

Joint β02 .931 .737 .945 .520 .948 .431 .952 .681 .929 .470 .944 .386

β03 .945 .664 .942 .470 .934 .386 .949 .609 .948 .424 .951 .347

α∗ .950 .514 .920 .372 .934 .307 .952 .484 .930 .344 .944 .279

K-S β02 .988 .864 .985 .590 .987 .476 .986 .713 .970 .484 .983 .402

β03 .983 .804 .980 .548 .983 .448 .994 .648 .979 .459 .979 .380

α∗ .952 .748 .924 .463 .910 .358 .942 .613 .905 .384 .884 .295

SMS β02 .965 1.317 .977 .849 .976 .709 .980 1.102 .976 .736 .975 .625

β03 .973 1.182 .975 .755 .980 .632 .985 .990 .975 .666 .975 .566

α∗ .978 1.281 .971 .869 .980 .716 .984 1.067 .975 .744 .970 .648

Rank β02 .831 .512 .907 .431 .936 .373 .843 .452 .915 .374 .946 .323

β03 .869 .499 .935 .410 .939 .343 .884 .434 .929 .348 .947 .297

α∗ .939 .565 .939 .423 .950 .355 .935 .512 .952 .387 .956 .316
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On the basis of our simulation results, we recommend the NPMLE-based estimator

and the isotonic two-stage estimator in combination with the nonparametric bootstrap

inference. The main convenience of the recommended estimators is that applied researchers

do not need to choose any tuning parameter. Moreover, our simulations show that NPMLE-

based joint estimator is more efficient (smaller RMSE and shorter CI median length) than

the K-S and SMS approaches. The rank estimator performs quite well when the sample size

is relatively large, but is outperformed by our estimators when the sample size is relatively

small.

5.2. An Empirical Application Using Joint Retirement Data

We utilize the interdependent durations model to study the joint retirement decisions of

Danish couples (An, Christensen, and Gupta (2004)) so that T1 and T2 represent the timing

choices of retirement dates for the wives and husbands, respectively. The unique feature in

this type of data is the couples’ synchronization of retirement dates (so T1 = T2), despite the

difference in their observable characteristics such as age, education level, or working skill.

This posts new challenges to the econometric analysis, because the probability of simul-

taneous retirement is assumed to be zero in the traditional (mixed) proportional hazards

models in duration analysis. In sharp contrast, the Honoré-de Paula model accommodates

the presence of simultaneous retirement, and this is generated by strategic interaction of

both players in the noncooperative game. In the literature, noncooperative games have

been widely used to model joint retirement behavior of couples in Gustman and Steinmeier

(2000) and Gustman and Steinmeier (2004), among others. Also see Lundberg and Pollak

(1994) for a general discussion of noncooperative games for within-marriage decisions.

The data of elderly couples are drawn from a random 0.5% sample of the Danish popu-

lation and are provided by An, Christensen, and Gupta (2004). We restrict the sample to

be couples satisfying the following conditions: (1) Both husband and wife were working in

the base year (defined as the year in which the oldest spouse is 54 in November); (2) At

least one spouse retired by the end of the survey, which allows us to determine the time

order of retirement for each couple; (3) Couples remained married until either the death of

the spouse or the end of the survey; (4) The base year was 1990 or earlier. The resulting

sample consists of 146 couples. For 29% of the couples in our sample, wives retired at least

one year earlier than husbands; 35% of couples retired in the same year; for the remaining

36% couples, wives retiring later than husbands. As explained in Section 2, the interdepen-

dent durations model can be estimated via an ordered response model. We consider two

covariates: age and a skill dummy variable indicating the job category. Table 5 presents

the summary statistics of the covariates for husbands and wives. Note that in the order



39

response model, we use the covariate of the wife minus the covariate of the husband. The

coefficient on age difference is normalized to one.

Table 5. Descriptive statistics.

Variables Mean Std.

Age-wife 50.10 3.82

Age-husband 53.41 2.05

Skill-wife 0.60 0.49

Skill-husband 0.68 0.47

Table 6 presents the estimates of the coefficient β02 on the job category difference and the

interaction parameter α∗. The minus sign of the point estimate of β02 suggests that if a wife

was categorized as a skilled employee while her husband was not, then the probability that

she retired earlier was smaller, which can be driven by the family-wise income effect. Our

two estimators and the rank estimator yield similar point estimates for β02. Nevertheless,

such an effect of job skill difference on the retirement timing turns out to be insignificant at

the 5% significance level except for the SMS estimator with an under-smoothed bandwidth

(n−1/4) and the rank estimator. On the other hand, the interaction parameter α∗ is signifi-

cantly positive in all approaches except for K-S estimator, suggesting that a spouse gained

extra utility from life after retirement together with her/his counterpart. In particular, the

Isotonic two-stage estimator indicates that couples to synchronize their retirement timing

with a force large enough to compensate on average 4.76 years of age difference in the SSE

estimate. That number rises to 6.17 years for the NPMLE-based joint estimator. Other

approaches yield comparable point estimates. In terms of the 95% confidence intervals, our

two-stage and joint estimators yield results close to the rank estimator. The vast majority

of values in their confidence intervals are large enough to counter the average age difference

3.31 of the couples15. This evidence is also consistent with previous empirical results based

on various structural models (Gustman and Steinmeier (2000, 2004)) where the essence

is to argue the interaction effect is significant enough to counter the age difference when

couples retire simultaneously. It is notable that SMS estimator produces substantially larg-

er upper bound for α∗ and smaller lower bound for β02. This is not surprising given the

over-coverage reported in our Monte-Carlo results. As a matter of fact, in a different em-

pirical application, Bellemare, Melenberg, and Van Soest (2002) also found that the SMS

estimates are far away from other methods including the ordered Probit, the partial linear,

and the semi-parametric least square, among others16.

15Recall that the coefficient on the age difference is normalized to one.
16See p194-195 of Bellemare, Melenberg, and Van Soest (2002) for details.
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Table 6. Estimates of an interdependent duration model applied to joint
retirement in Denmark, n = 146, β01 (coef. on age difference) is normalized
to 1. The 95% confidence intervals are constructed from 200 bootstrap sam-
ples.

β02 (job category diff.) α∗ (interaction)
Two-stage Coef. -2.35 4.76

95% CI [-12.69, 2.32] [3.06, 14.31]
Joint Coef. -3.21 6.17

95% CI [-9.54, 3.32] [2.90, 15.96]
K-S Coef. -0.14 5.76

(p = 0.05) 95% CI [-12.24, 4.02] [-1.71, 9.55]
K-S Coef. -0.14 7.60

(p = 0.20) 95% CI [-12.24, 4.02] [-0.57, 9.34]
SMS Coef. -5.20 4.70

(h = n−1/5) 95% CI [-23.90, 0.01] [4.16, 23.60]
SMS Coef. -5.22 4.83

(h = n−1/4) 95% CI [-24.14, -0.32] [3.99, 23.94]
Rank Coef. -2.99 8.20

95% CI [-10.56, -0.40] [3.15, 14.40]

Figure 3. The estimated CDF of log(ε1/ε2): the distribution of the log

ratio of wife-husband unobservables.
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Figure 3 plots the estimated CDF of the error term in the ordered response model, which

corresponds to the distribution of the log ratio of unobservables for wives and husbands,

H(·). By construction, both our isotonic and NPMLE estimates for the CDF are non-

decreasing step functions. In contrast, the K-S approach yields an estimated CDF that

fluctuates and has some local maximum and minimum points.

6. Conclusion and Extension

In this paper, we have proposed two simple semiparametric estimation methods for or-

dered response models with an unknown latent error distribution. We rigorously establish

the asymptotic properties of finite dimensional parameters, tackling the challenging is-

sues related to the nonparametric components based on NPMLE. Our methods are easy

to implement and free of any tuning parameter. Also, the methodology is directly appli-

cable to estimate the social interaction effect in the interdependent durations model by

Honoré and de Paula (2010). Complementing several important contributions as in Lee

(1992), Klein and Sherman (2002), Lewbel (2002), and Coppejans (2007), our work makes

the Honoré-de Paula model a viable benchmark in analyzing multiple durations data with

strategically-interacting agents. Both the Monte Carlo simulation and a real data applica-

tion demonstrate the utility of our approach.

In conclusion, we briefly draw the reader’s attention to several interesting questions that

can provide future research problems in this area. First of all, a rigorous investigation

of an efficient procedure proposed in Section 4.2 need to be delegated to another paper,

considering the amount of details required. A second extension involves modeling the joint

retirement phenomenon by cooperative games as considered by Honoré and de Paula (2018).

The Nash bargaining solution in Honoré and de Paula (2018) can not be written as the

standard ordered response model, unlike the non-cooperative game model in Honoré and

de Paula (2010). When it comes to the estimation and inference of the model, Honoré and

de Paula (2018) resort to the indirect inference, which is parametric and computationally

intensive. It remains a challenge to develop a flexible semiparametric estimation proce-

dure for the model in Honoré and de Paula (2018). Third, one could apply our estimation

methods in estimating a sample selection model where the selection equation involves mak-

ing ordered choices; see Section VI.A on [p.147] of Vella (1998). An interesting example

is presented by Attanasio, Koujianou, and Kyriazidou (2008) in which they study credit

constraints faced by consumers in the market for durable goods. Last but note least, it is

worthwhile to explore the shape-restricted estimation of the ordered response model with

heteroskedasticity (Lewbel, 2000; Chen and Khan, 2003). A thorough treatment of all these

extensions is outside the scope of this paper and will be pursued in the future.
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7. Appendix A: Proofs of Main Results

This appendix provides proofs for the theorems. The lemmas used for proofs (denoted

as Lemma S1’s and S2’s) are collected in the supplemental note.

We denote some positive constants by c or C whose value might change line by line.

Proof of Theorem 4.1. Part (i) has been shown in Theorem 4.1 [p1426] of Groeneboom and

Hendrickx (2018). Here we proof part (ii). Note that Remark 3.1 [p1423] of Groeneboom

and Hendrickx (2018) showed that F̂n(u; β̂n) converges uniformly to F0(u). We start with

the following estimating equation in Stage 2:

(7.1) Ψn(α) =
1

n

n∑
i=1

[
1−∆3i − F̂n(X ′iβ̂n + α; β̂n)

]
,

and its probability limit

(7.2) Ψ(α) = E [1−∆3 − F0(X ′β0 + α)] .

We first show the following uniform convergence result

(7.3) sup
α
|Ψn(α)−Ψ(α)| →p 0.

Observe that

sup
α
|Ψn(α)−Ψ(α)| ≤ sup

α
|(Pn − P )

[
∆3 + F̂n(X ′β̂n + α; β̂n)

]
|(7.4)

+ sup
α
|P
[
F̂n(X ′β̂n + α; β̂n)− F0(X ′β0 + α)

]
|.

Hence, the uniform convergence (7.3) hold by Glivenko-Cantelli property in Lemma (S1.4)

and the fact that F̂n(u; β̂n) converges to F0(u) in sup-norm.

Next we show the existence of a unique zero-crossing point with probability approaching

to 1. Because α is a scalar, the zero-crossing point of Ψn(α) can be equivalently defined as

α̂n such that for any α:

(7.5) (α̂n − α)Ψn(α) ≥ 0,

see Lemma 4.1 of Groeneboom and Hendrickx (2018). If the zero-crossing point does not

exist, then for all α1 there exists some α2 such that

(7.6) (α1 − α2)Ψn(α2) ≤ −c < 0,

for some finite positive constant c. Such a constant term c exists because the isotonic

estimate F̂n(u; β̂n) is a piece-wise constant function with finitely many jumps for any n, so
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is Ψn(α) for all α. In particular, we have

(7.7) (α0 − α2)Ψn(α2) ≤ −c,

By (7.3), we get

(7.8) (α0 − α2)Ψ(α2) ≤ −c/2,

with a probability tending to 1. However, this contradicts the fact that α0 is the unique

zero crossing point of Ψ(α), since Ψ(α) is monotone and continuous w.r.t. α, given the

monotonicity and absolute continuity of F0. Thus, the zero-crossing point α̂n exists with a

probability tending to 1.

Finally considering the monotone estimating equation Ψn(α) given the monotonic NPM-

LE F̂n, the consistency result is a direct consequence of Lemma 5.10 in Van Der Vaart

(1998). �

Proof of Theorem 4.2. The linear representation of β̂n and its asymptotic normality have

been shown in Theorem 4.1 of Groeneboom and Hendrickx (2018). Here we focus on α̂n.

Following Groeneboom and Hendrickx (2018), we can define the value of Ψn at α̂n by

setting Ψn(α̂n) = 0. Note that Ψn(α̂n) is the convex combination of the left and right limit

at α̂n:

(7.9) Ψn(α̂n) = λΨn(α̂n−) + (1− λ)Ψn(α̂n+) = 0,

where we can choose λ ∈ [0, 1] such that (7.9) holds. To prove the root-n consistency and

asymptotic normality of α̂n, we start with the estimating equation Ψn(α̂n) = 0 and we

decompose the l.h.s. as

(7.10)
1

n

n∑
i=1

[
1− F̂n(X ′iβ̂n + α̂n; β̂n)−∆3i

]
= I1n + I2n + I3n,

where

I1n =
1

n

n∑
i=1

[1− F0(X ′iβ0 + α0)−∆3i] ,(7.11)

I2n =
1

n

n∑
i=1

[
F0(X ′iβ0 + α0)− F̂n(X ′iβ0 + α0; β0)

]
,(7.12)

I3n =
1

n

n∑
i=1

[
F̂n(X ′iβ0 + α0; β0)− F̂n(X ′iβ̂n + α̂n; β̂n)

]
.(7.13)

Here F̂n(X ′iβ0 + α0; β0) is the (infeasible) NPMLE computed using the true unknown β0.

Apparently, the term I1n is of Op(n
−1/2) with its influence function equal to ψ0 as defined

in our Theorem 4.2.



44

Referring to I2n, we get I2n = Ia2n + Ib2n where

Ia2n = P
[
F0(U + α0)− F̂n(U + α0; β0)

]
and(7.14)

Ib2n = (Pn − P )
[
F0(U + α0)− F̂n(U + α0; β0)

]
.

We shall utilize P -Donsker property (Van Der Vaart and Wellner (1996)) to show Ib2n =

op(n
−1/2) in Lemma (S1.4), and we obtain the linear representation for Ia2n as follows

(7.15)
√
nIa2n = GnψF0 + op(1),

in our Lemma (S1.9). When it comes to I3n, we decompose it into three terms I3n =

Ia3n + Ib3n + Ic3n where

Ia3n = P
[
F0(X ′β̂n + α̂n; β̂n)− F0(X ′β0 + α0)

]
,

(7.16)

Ib3n = P
[
F̂n(X ′β̂n + α̂n; β̂n)− F̂n(X ′β0 + α0; β0)− F0(X ′β̂n + α̂n; β̂n) + F0(X ′β0 + α0)

]
,

Ic3n = (Pn − P )
[
F̂n(X ′β̂n + α̂n; β̂n)− F̂n(X ′β0 + α0; β0)

]
.

In Lemma S1.11 and Lemma S1.4 respectively, we prove that Ib3n = op(n
−1/2), Ic3n =

op(n
−1/2) using P -Donsker Property of related functional classes. Also we have the following

expansion:

(7.17) Ia3n = Vα0(α̂n − α0) + Vβ0(β̂n − β0) + op(n
−1/2 + α̂n − α0 + |β̂n − β0|).

In sum, the desired linear representation for α̂n follows after collecting the leading terms

in I1n, Ia2n and Ia3n and substituting the linear representation for β̂n based on (4.5). �

Proof of Theorem 4.3. Given the compactness of the parameter space, the sequence of es-

timator θ̃n has a subsequence θ̃nk
converging to some element θ∗ = (α∗, β∗′)′. In Appendix

C of the supplemental note, we apply Theorem 7.4 in Van de Geer (2000) to show the

following convergence in terms of the Hellinger distance (Van de Geer (1993)):

sup
θ

h(p̂n,θ, p0,θ) = Op(n
−1/3 log2 n),

where the underlying density function is

p0,θ ≡ F∆1i
0 (X ′iβ; θ)× (F0(X ′iβ + α; θ)− F0(X ′iβ; θ))

∆2i × (1− F0(X ′iβ + α; θ))
∆3i ,
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and p̂n,θ is the corresponding maximum likelihood estimator given θ.

Since the Hellinger distance (Van de Geer (1993)) is equal to

2h(p̂n,θ, p0,θ) =

∫ (
F̃ 1/2
n (u; θ)− F 1/2

0 (u; θ)
)2

dQ

+

∫ (
(F̃n(u+ α; θ)− F̃n(u; θ))1/2 − (F0(u+ α; θ)− F0(u; θ))1/2

)2

dQ

+

∫ (
(1− F̃n(u+ α; θ))1/2 − (1− F0(u+ α; θ))1/2

)2

dQ,

it is obvious that

sup
θ
‖ F̃n(·; θ)− F0(·; θ) ‖2= Op(n

−1/3 log2 n),

where the L2 norm is defined as ‖ F̃n(u; θ)−F0(u; θ) ‖2
2≡
∫ (

F̃n(u; θ)− F0(u; θ)
)2

g0(u)du.

As a consequence of the uniform convergence for NPMLE, we have

F̃nk
(α̃nk

+ x′β̃nk
; α̃nk

, β̃nk
)→ F0(α∗ + x′β∗;α∗, β∗).

Thereafter, the following uniform convergence is immediate.

(7.18) |Φnk
(θ̃nk

)− Φ(θ∗)| →p 0.

Given the true unknown θ0 is the unique root of the continuous limiting function Φ(·), we

must have θ∗ = θ0, which leads to the consistency of θ̃n.

The proof of θ̃n’s existence is more tedious (see Theorem 4.1 in Groeneboom and Hen-

drickx (2018)) and is relegated to Appendix C in the supplemental note. �

Proof of Theorem 4.4. Denote the stacked moment conditions by

ζ(Zi;α, β, F (;α, β)) =

(
[∆1i − F (X ′iβ;α, β)]Xi

∆3i − 1 + F (α +X ′iβ;α, β)

)
We set the value of Φn to be zero at the point of zero-crossing θ̃n = (α̃n, β̃n) as

Φn(θ̃n) ≡ Pnζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n)) = 0.

With this definition, we use the representation of the components as a convex combination

of the left and right limit at θ̃n:

(7.19) Φn,j(θ̃n) = λjΦn,j(θ̃n−) + (1− λj)Φn,j(θ̃n+) = 0,

where Φn,j denotes the jth coordinate of Φn and where we can choose λj from the unit

interval in such a way that (7.19) holds since we have a crossing of zero component-wise.

Note that this does not change the location of zero-crossing point either.
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Then we proceed with

0 =(Pn − P )ζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n))

+P [ζ(Z;α0, β0, F̃n(·;α0, β0))− ζ(Z;α0, β0, F0(·))]

+P [ζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n))− ζ(Z;α0, β0, F̃n(·;α0, β0))](7.20)

In the technical lemma (see Lemma S2.3) of our Appendix C, we prove that by the consis-

tency of our estimator and the P-Donsker property of the corresponding functional class,

one has

(Pn − P )ζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n)) = Pnζ(Z;α0, β0, F0) + op(n
−1/2).

Also, by applying the P-Donsker property and taking a Taylor expansion, one has

P [ζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n))− ζ(Z;α0, β0, F̃n(·;α0, β0))]

= P [ζ(Z; α̃n, β̃n, F0(·; α̃n, β̃n))− ζ(Z;α0, β0, F0(·))] + op(n
−1/2)

= H0

(
α̃n − α0

β̃n − β0

)
+ op(n

−1/2 + (α̃n − α0) + |β̃n − β0|).

When it comes to the second term in (7.20), we integrate by parts to get

P [ζ(Z;α0, β0, F̃n(·;α0, β0))− ζ(Z;α0, β0, F0(·))] =

∫
c(u)d[(F̃n − F0)(u)] = κ(F̃n)− κ(F0),

which reduces the problem to characterizing the asymptotic property of the linear functional

for the NPMLE. Thus, we proceed in Appendix C to show that

P [ζ(Z;α0, β0, F̃n(·;α0, β0))− ζ(Z;α0, β0, F0(·))] = (Pn − P )φF0 + op(n
−1/2).

In sum, we obtain

H0

(
α̃n − α0

β̃n − β0

)
= Pnζ(Z;α0, β0, F0) + (Pn − P )φF0 + op(n

−1/2 + (α̃n − α0) + |β̃n − β0|).

Hence, the desired conclusion follows given the short-hand notation φ0 ≡ ζ(Z;α0, β0, F0).

�

Proof of Theorem 4.5. The bootstrap validity of β̂∗n has been shown in Groeneboom and

Hendrickx (2017)[p3465, equation (4.19)]. Here we focus on α̂∗n. To prove its conditional

weak convergence, we start with the bootstrap estimating equation and we decompose it

into

(7.21)
1

n

n∑
i=1

Mni

[
1− F̂ ∗n(X ′iβ̂

∗
n + α̂∗n; β̂∗n)−∆3i

]
= I∗1n + I∗2n + I∗3n,
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where

I∗1n =
1

n

n∑
i=1

Mni [1− F0(X ′iβ0 + α0)−∆3i] ,(7.22)

I∗2n =
1

n

n∑
i=1

Mni

[
F0(X ′iβ0 + α0)− F̂ ∗n(X ′iβ0 + α0; β0)

]
,(7.23)

I∗3n =
1

n

n∑
i=1

Mni

[
F̂ ∗n(X ′iβ0 + α0; β0)− F̂ ∗n(X ′iβ̂

∗
n + α̂∗n; β̂∗n)

]
.(7.24)

The general scheme is in analog with our proof of Theorem 4.2. First of all, note that

I∗1n = OPM
(n−1/2) in PZ-probability.

Referring to I∗2n, we get I2n = I∗a2n + I∗b2n where

(7.25)

I∗a2n = P
[
F0(U + α0)− F̂ ∗n(U + α0; β0)

]
and I∗b2n = (P∗n−P )

[
F0(U + α0)− F̂ ∗n(U + α0; β0)

]
.

We shall utilize P -Donsker property (Van Der Vaart and Wellner (1996)) to show Ib2n =

op(n
−1/2) in Lemma S1.4 in the supplemental note. We also state the linear representation

of I∗a2n in Lemma S1.9.

When it comes to I∗3n, we decompose it into three terms I∗3n = I∗a3n + I∗b3n + I∗c3n where

I∗a3n = P
[
F0(X ′β̂∗n + α̂∗n; β̂∗n)− F0(X ′β0 + α0)

]
,

(7.26)

I∗b3n = P
[
F̂ ∗n(X ′β̂∗n + α̂∗n; β̂∗n)− F̂ ∗n(X ′β0 + α0; β0)− F0(X ′β̂∗n + α̂∗n; β̂∗n) + F0(X ′β0 + α0)

]
,

I∗c3n = (P∗n − P )
[
F̂ ∗n(X ′β̂∗n + α̂∗n; β̂∗n)− F̂ ∗n(X ′β0 + α0; β0)

]
.

In Lemma S1.11 and Lemma S1.4 respectively, we prove that I∗b3n = op(n
−1/2), I∗b3n =

op(n
−1/2) using P -Donsker Property of related functional classes. Also we have the following

expansion:

(7.27) I∗a3n = Vα0(α̂
∗
n − α0) + Vβ0(β̂

∗
n − β0) + op(n

−1/2 + α̂∗n − α0 + |β̂∗n − β0|).

By taking the difference of two linear representation for α̂∗n and α̂n respectively, we get

(7.28)
√
n (α̂∗n − α̂n) = V −1

α0
G∗n [ψ0 + ψF0 + ψβ0 ] + op(1),

and the claim follows from Theorem 3.6.13 in Van Der Vaart and Wellner (1996). �

Proof of Theorem 4.6. The overall structure of the proof is similar as the one for Theorem

4.4. The only necessary change is that one has to apply the maximal inequality with

multiplier bootstrap weights to relevant functional classes. To avoid repetition, we only

sketch the main steps. We skip the steps leading to the consistency of (α̃∗n, β̃
∗
n) and directly
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start with

P∗nζ(Z; α̃∗n, β̃
∗
n, F̃

∗
n(·; α̃∗n, β̃∗n)) = 0.

Then we proceed with

0 =(P∗n − P )ζ(Z; α̃∗n, β̃
∗
n, F̃

∗
n(·; α̃∗n, β̃∗n))

+P [ζ(Z;α0, β0, F̃
∗
n(·;α0, β0))− ζ(Z;α0, β0, F0(·))]

+P [ζ(Z; α̃∗n, β̃
∗
n, F̃

∗
n(·; α̃∗n, β̃∗n))− ζ(Z;α0, β0, F̃

∗
n(·;α0, β0))]

Then one can show that

(P∗n − P )ζ(Z; α̃∗n, β̃
∗
n, F̃

∗
n(·; α̃∗n, β̃∗n)) = P∗nζ(Z;α0, β0, F0) + op(n

−1/2),

P [ζ(Z;α0, β0, F̃
∗
n(·;α0, β0))− ζ(Z;α0, β0, F0(·))] = (P∗n − P )φF0 + op(n

−1/2),

and

P [ζ(Z; α̃∗n, β̃
∗
n, F̃

∗
n(·; α̃∗n, β̃∗n))− ζ(Z;α0, β0, F̃

∗
n(·;α0, β0))]

= P [ζ(Z; α̃∗n, β̃
∗
n, F0(·; α̃∗n, β̃∗n))− ζ(Z;α0, β0, F0(·))] + op(n

−1/2)

= H0

(
α̃∗n − α0

β̃∗n − β0

)
+ op(n

−1/2 + (α̃∗n − α0) + |β̃∗n − β0|).

In the end, we get

H0

(
α̃∗n − α0

β̃∗n − β0

)
= P∗nζ(Z;α0, β0, F0) + (P∗n − P )φF0 + op(n

−1/2 + (α̃∗n − α0) + |β̃∗n − β0|),

which leads to(
α̃∗n − α̃n
β̃∗n − β̃n

)
= H−1

0 [(P∗n − Pn)ζ(Z;α0, β0, F0) + (P∗n − Pn)φF0 ] + op(n
−1/2).

�
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S1. Appendix B: Technical Proofs Related to Two-stage

Estimation

We first restate some necessary definitions and Theorem 2.4.1 in Van Der Vaart and

Wellner (1996) that will be used repeatedly in the sequel. Let F be the class of functions

and L2(Q) be the L2-norm defined by a probability measure Q . For any probability

measure Q, let N(ε,F , L2(Q)) be the minimal number of balls of radius ε needed to cover

the class F . The entropy integral J(δ,F) is defined as

J(δ,F) ≡ sup
Q

∫ δ

0

√
1 + logN(ε,F , L2(Q))dε.

An envelope function of a functional class F is a function F such that |f(x)| ≤ F (x) for

all x and f ∈ F .

Lemma S1.1 (Theorem 2.14.1 in (Van Der Vaart and Wellner (1996))). Let P0 be the

distribution of the underlying observation and let F be a P0-measurable class with an

envelope function F . We have

(S1.1) E sup
f∈F
|Gnf | . J(1,F) ‖ F ‖P0,2

Lemma S1.2. [Lemma 3.6.7 in (Van Der Vaart and Wellner (1996))] Let Zn1, ..., Znn

be arbitrary stochastic processes and (Mn1, ...,Mnn)′ be any exchangeable random vector
1



2

independent of Zn1, ..., Znn. For any n0 > 0 and n > n0, we have

EZM

(∥∥∥∥∥ 1√
n

n∑
i=1

MniZni

∥∥∥∥∥
)
≤ n0EZ (‖Zn1‖)

(
EM (max1≤i≤n |Mni|)√

n

)

+

(∫ ∞
0

√
PM (Mn1 ≥ u)du

)
EZ

(∣∣∣∣∣ max
n0<i≤n

∥∥∥∥∥ 1√
n

i∑
j=n0+1

Znj

∥∥∥∥∥
∣∣∣∣∣
)
.

We need to apply the following well-known entropy bounds concerning monotone func-

tions or functions of bounded variation repeatedly. The bounds actually hold for the

bracketing entropy uniformly over the underlying probability measure, which will be used

in Appendix C as well. We refer readers to Theorem 2.7.5 on [p.159] of Van Der Vaart and

Wellner (1996) or Lemma 3.8 on [p.36] of Van de Geer (2000) for the proofs.

Lemma S1.3 (Entropy Bounds). Let AC be the class of monotone functions with values

in [0, C], then for all δ > 0,

(S1.2) J(δ,AC) .
√
δ.

Let BC be the class of functions of bounded variation with values in [0, C], then for all

δ > 0,

(S1.3) J(δ,BC) .
√
δ.

Now we obtain the entropy bounds for the key functional class in our context and prove

the asymptotic characterizations for terms appearing in our Theorem 4.1 and Theorem 4.2.

Lemma S1.4. The functional class G defined by

(S1.4) G ≡
{

(x, δ3) 7→ (1− δ3 − F (x′β + α)) : (α, β) ∈ Θ, F (·) ∈ A
}

has bounded entropy integral. Therefore, we have the following Glivenko-Cantelli results

(Pn − P )
[
F̂n

(
X ′β̂n + α̂n; β̂n

)]
= op(1), and

(P∗n − P )
[
F̂n

(
X ′β̂∗n + α̂∗n; β̂∗n

)]
= oPM

(1),

in PZ-probability. Moreover, we obtain the stochastic equicontinuity as

(S1.5) Gn

[
F̂n

(
X ′β̂n + α̂n; β̂n

)
− F0 (X ′β0 + α0)

]
= op(1), and

(S1.6) G∗n
[
F̂n

(
X ′β̂∗n + α̂∗n; β̂∗n

)
− F0 (X ′β0 + α0)

]
= oPM

(1),

in PZ-probability.

Proof. We first verify that the uniform entropy integral J(1,G) is bounded. Because the

isotonic estimator F̂n(t, β) is a monotonically increasing function for any given β, G is the



3

class of composite functions involving an monotonically increasing link/ridge function and a

linear index x′β+α with parameters (α, β) belonging to a compact Euclidean space. Hence,

by Lemma 2.3 in Baladbaoui, Groeneboom, and Hendrickx (2017) we get the following

bound on the uniform entropy logN(ε,G) . 1/ε, so the uniform entropy integral J(1,G)

is indeed bounded. Therefore, the functional class G is P-Donsker, which directly implies

the stated Glivenko-Cantelli properties.

Regarding the stochastic equicontinuity, consider the following class:

Gε ≡
{
x 7→ (F (x′β + α)− F0(x′β0 + α0)) : (α, β) ∈ Θ, F (·) ∈ A, |α−α0|∨ ‖ β−β0 ‖ ∨ ‖ F−F0 ‖∞≤ ε

}
,

for some small positive ε. Again Gε has bounded entropy integral similarly as G. Moreover,

F̂n

(
X ′β̂n + α̂n; β̂n

)
− F0 (X ′β0 + α0) belongs to Gε with probability tending to 1, because

‖ F̂n
(
X ′β̂n + α̂n; β̂n

)
− F0 (X ′β0 + α0) ‖∞

(S1.7)

≤‖ F̂n
(
X ′β̂n + α̂n; β̂n

)
− F0

(
X ′β̂n + α̂n; β̂n

)
‖∞ + ‖ F0

(
X ′β̂n + α̂n; β̂n

)
− F0 (X ′β0 + α0) ‖∞

→ 0.

The first term on the right hand side of the inequality follows from the uniform consis-

tency of NPMLE as in (S1.16), whereas the convergence of the second term is due to the

smoothness of F0(u; β) (w.r.t. both u and β) and consistency of α̂n and β̂n. Thereafter,

the desired stochastic equicontinuity follows from applying (S1.1) to the class Gε.
When it comes to the bootstrap version, applying the multiplier inequality in Lemma S1.2

to Gε, we get

(S1.8) EZM |‖ G∗n ‖| . EZ |Gε|
1√
n
EM

∣∣∣max
i
Mni

∣∣∣+ EZ
∣∣∣∣ max
n0≤k≤n

‖ Gk ‖
∣∣∣∣ ,

where Gε is the corresponding envelope function. The first term is of smaller order since

1√
n
EM

∣∣∣max
i
Mni

∣∣∣ = op(1),

under our assumptions on the bootstrap weights. Meanwhile, the Levy inequality (Propo-

sition A.1.2 of Van Der Vaart and Wellner (1996)) implies:

P{max
k≤n
‖ Gk ‖> λ} ≤ 2P{‖ Gn ‖> λ}

which makes the second term negligible. �

An immediate consequence of Lemma S1.4 is Lemma S1.5 showing the negligibility of

related terms in our Theorem 4.2 and Theorem 4.5. The claims on Ic3n and Ic∗3n directly
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follow from results (S1.5) and (S1.6). Regarding Ib2n and Ib∗2n, the proofs are even easier

because both α0 and β0 are fixed in those two terms.

Lemma S1.5. Suppose Conditions (1)-(8) hold. We have the characterization of following

smaller order terms:

√
nIb2n = op(1)

√
nIc3n = op(1), and(S1.9)

√
nIb∗2n = oPM

(1)
√
nIc∗3n = oPM

(1),(S1.10)

in PZ-probability.

Now we prove several preparatory lemmas related to the linear representation of Ia2n.

Lemma S1.6. Suppose Conditions (1)-(8) hold. The following representations hold:

(S1.11) Ia2n = −
∫
φα0(u)(F̂n(u; β0)− δ1)dP (u, δ1),

where

(S1.12) φα0(u) = g0(u− α0)/g0(u).

Proof. The result follows similar argument as in Lemma 4.1 of Groeneboom, Jongbloed,

and Witte (2010):

Ia2n = −
∫ (

F̂n(u+ α0; β0)− F0(u+ α0)
)
g0(u)du(S1.13)

= −
∫ (

F̂n(u; β0)− F0(u)
)
g0(u− α0)du

= −
∫
φα0(u)

(
F̂n(u; β0)− F0(u)

)
dG0(u)

= −
∫
φα0(u)(F̂n(u; β0)− δ1)dP (u, δ1),

where in the last equality we have used the fact that δ1dP = F0(u)g0(u), since the proba-

bility density function of the binary choice data (U,∆1) is

(S1.14) p(u, δ1) = F0(u)δ1(1− F0(u))1−δ1g0(u).

�

We consider the piece-wise constant version of φF0 which is constant on the same intervals

where the NPMLE F̂n(·; β) remains constant. Denote those intervals by [τi, τi+1). We define

(S1.15) φ̄α0(u) = φα0(Ân(u; β)),
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where

Ân(u; β) =


τi, if ∀t ∈ Ji : F0(t) > F̂n(τi; β),

s, if ∃s ∈ Ji : F0(s) = F̂n(s; β),

τi+1, if ∀t ∈ Ji : F0(t) < F̂n(τi; β),

for u ∈ Ji.
The following uniform convergence results are available in Lemma 5.9 in Groeneboom and

Wellner (1992), Lemma 3.1 of Groeneboom and Hendrickx (2018), and the corollary of

Lemma 3.1 in Groeneboom and Hendrickx (2017).

Lemma S1.7. Suppose Conditions (1)-(8) hold, then we have

(S1.16) P

(
lim
n→∞

sup
β∈B,u

∣∣∣F̂n(u; β)− F0(u; β)
∣∣∣ = 0

)
= 1,

and

sup
β∈B,u

∣∣∣F̂n(u; β)− F0(u; β)
∣∣∣ = Op

(
log n× n−1/3

)
,

sup
β∈B,u

∣∣∣Ân(u; β)− u
∣∣∣ = Op

(
log n× n−1/3

)
.

Furthermore, for the bootstrap version, we have

(S1.17) PM

(
lim
n→∞

sup
β∈B,u

∣∣∣F̂ ∗n(u; β)− F0(u; β)
∣∣∣ = 0|Z

)
= 1,

and

sup
β∈B,u

∣∣∣F̂ ∗n(u; β)− F0(u; β)
∣∣∣ = Op

(
log n× n−1/3

)
,

sup
β∈B,u

∣∣∣Â∗n(u; β)− u
∣∣∣ = Op

(
log n× n−1/3

)
.

in PZ-probability.

Lemma S1.8. Suppose Conditions (1)-(8) hold, then we have

(S1.18) ‖ φ̄α0 − φα0 ‖∞.‖ F̂n(u; β0)− F0(u) ‖∞ .

Proof. Our proof adapts the argument in Lemma A.4 of Groeneboom, Jongbloed, and

Witte (2010). Let ξ to denote some intermediate value in Taylor expansions whose value

may change from line to line. For given u in the support of F0(·; β), then the interval Ji it

belongs to is of one of the following three types:

(i) F0(x; β) > F̂n(τi; β) for all x ∈ Ji;
(ii) F0(x; β) > F̂n(x; β) for some x ∈ Ji;
(iii) F0(x; β) < F̂n(τi; β) for all x ∈ Ji;
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see Figure 5 in Groeneboom, Jongbloed, and Witte (2010). First of all, when F0(u; β) =

F̂n(u; β), then by definition of φ̄α0(u) = φα0(u) so both the left-hand side and right-hand

side of (S1.18) are zero.

Next, for the case where F0(u; β) 6= F̂n(u; β). For v, ξ ∈ Ji, we get by Taylor expansion:

(S1.19) |F̂n(u; β)−F0(u; β)| = |F̂n(v; β)−F0(u; β)| = |F̂n(v; β)−F0(v; β)−(u−v)f0(ξ; β)|.

There are three possibilities. If Ân(u; β) = τi, then F0(τi; β) − F̂n(τi; β) > 0 which gives

rise to

(S1.20) |F̂n(u; β)− F0(u; β)| = |(u− τi)f0(ξ; β) + F0(τi; β)− F̂n(τi; β)| ≥ |u− τi|f0(ξ; β),

where we apply (S1.19) while letting v = τi.

If Ân(u; β) = v for some v 6= u ∈ Ji, then F̂n(v; β) = F0(v; β) so

(S1.21) |F̂n(u; β)− F0(u; β)| = |F̂n(v; β)− F0(v; β)− (u− v)f0(ξ; β)| = |u− v|f0(ξ; β).

If Ân(u; β) = τi+1, then F̂n(τi=1−; β) > F0(τi+1−; β) ≥ 0 giving us

(S1.22)

|F̂n(u; β)− F0(u; β)| = |(τi+1 − u)f0(ξ; β) + F̂n(τi+1−; β)− F0(τi+1; β)| ≥ |τi+1 − u|f0(ξ; β).

In sum, we obtain

(S1.23) |F̂n(u; β)− F0(u; β)| ≥ |v − u|f0(ξ; β) ≥ c|u− v|,

where we use the fact that the density function is bounded below by a positive constant

over the compact interval.

Finally, the imposed smoothness condition on φα0 leads to

(S1.24) |φ̄α0(u)− φα0(u)| = |φα0(v)− φα0(u)| ≤ c|v − u|,

where v ∈ [τi, τi+1]. Hence, the desired claim follows by combining (S1.23) and (S1.24). �

Given the above lemmas, we get the following characterization of Ia2n and its bootstrapped

version I∗a2n.

Lemma S1.9. Suppose Conditions (1)-(8) hold, then we have the following linear repre-

sentations:

(S1.25)
√
nIa2n =

√
nP
[
F0 − F̂n(·, β0)

]
= GnψF0 + op(1).

and

(S1.26)
√
nI∗a2n =

√
nP
[
F0 − F̂ ∗n(·, β0)

]
=
√
n [P∗n − P ]ψF0 + opM (1),

in PZ-probability.
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Proof. We only proof the claim regarding Ia2n to avoid repetition. Given the characterization

of our isotonic estimate F̂n(u; β0) and the piece-wise constant nature of φ̄α0 , we get

(S1.27)

∫
φ̄α0 [F̂n(u; β0)− δ1]dPn = 0,

by equality (8.15) in Groeneboom and Jongbloed (2014). Therefore, starting with the

alternative representation of Ia2n we get

Ia2n =

∫
φ̄α0(F̂n(u; β0)− δ1)d(Pn − P )(S1.28)

+

∫
[φ̄α0 − φα0 ](F̂n(u; β0)− δ1)dP (u, δ1).(S1.29)

In the next lemma, we show that

(S1.30)

∫
φ̄α0(F̂n(u; β0)− δ1)d(Pn − P ) =

∫
φα0(F0(u)− δ1)d(Pn − P ) + op(n

1/2),

and

(S1.31)

∫
[φ̄α0 − φα0 ](F̂n(u; β0)− δ1)dP (u, δ1) = Op(n

−2/3),

which lead to the desired conclusion. �

Lemma S1.10. Suppose Conditions (1)-(8) hold, then the following hold:

Rn ≡
∫
φ̄α0(F̂n(u; β0)− F0(u))d(Pn − P ) = op(n

−1/2),

and

(S1.32) Sn ≡
∫

[φ̄α0 − φα0 ](F̂n(u; β0)− δ1)dP (u, δ1) = op(n
−1/2).

Proof. We first handle the term Sn as follows.

Sn =

∫
[φ̄α0 − φα0 ](F̂n(u; β0)− F0(u))dG(u)(S1.33)

.‖ F̂n(u; β0)− F0(u) ‖2
∞= Op(n

−2/3 × log2 n),(S1.34)

where in the second step we used (S1.8).

Referring to the term Rn, we introduce some notations adapted from Groeneboom, Jong-

bloed, and Witte (2010). Define

(S1.35) ξB(u) = φ̄α0(u)B(u)

where B is a function of bounded variation and with bounded superior norm C. And let

(S1.36) GC ≡ {ξB(u) : B ∈ BC}.
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Given the result in (S1.7), for any small γ > 0 we can find finite constant term C such that

for all n sufficiently large:

Pr{Υn,C} ≡ Pr{sup
u,β
|F̂n(u; β)− F0(u; β)| ≤ Cn−1/3 log n}

≥ 1− γ/2.

Now for the vanishing sequence νn to be specified later, it is straightforward to arrive at

Pr{|n1/2Rn| > νn} = Pr{|n1/2Rn| > νn ∩Υn,C}+ Pr{|n1/2Rn| > νn ∩Υc
n,C}

≤ ν−1
n E

[
|n1/2Rn|1{Υn,C}

]
+ γ/2,

for any small γ. Again by (S1.7), we have

E
[
|n1/2Rn|1{Υn,C}

]
≤ E sup

B∈BC

∣∣∣∣n1/2−1/3 log n

∫
φ̄α0(u)B(u)d(Pn − P )

∣∣∣∣
≤ n−1/3 log nE sup

ξ∈GC

∣∣∣∣∫ ξ(u)dGn(u)

∣∣∣∣ .
The rest of our proof is to utilize Theorem 2.14.1 in Van Der Vaart and Wellner (1996)

to bound the expectation in the last display. Following the construction in Groeneboom,

Jongbloed, and Witte (2010), the entropy integral of GC is bounded above by a finite

constant, i.e., J(1,GC) < ∞. And the L2-norm of the envelope function is also bounded.

Thus applying (S1.1), we have

(S1.37) E|Rn| ≤ n−5/6 log n× E sup
ξ∈GC

∣∣∣∣∫ ξ(u)dGn(u)

∣∣∣∣ . n−5/6 log n,

which immediately leads to Rn = op(n
−1/2).

�

Lemma S1.11. Suppose Conditions (1)-(8) hold. We have the characterization of following

smaller order terms:

(S1.38)
√
nIb3n = oP (1) and

√
nIb∗3n = oPM

(1),

in PZ-probability.

Proof. Again we only prove the part involving Ib3n as the other one follows analogously.

First of all, recall that

Ib3n = P
[
F̂n(X ′β̂n + α̂n; β̂n)− F0(X ′β̂n + α̂n; β̂n)

]
−P

[
F̂n(X ′β0 + α0; β0)− F0(X ′β0 + α0)

]
.
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Following the arguments in Lemma S1.9, we get

Ib3n =

∫ [(
g0(u− α̂n; β̂n)

g0(u; β̂n)
[F0(u; β̂n)− δ1]

)
−
(
g0(u− α0)

g0(u)
[F0(u)− δ1]

)]
d(Pn − P )

(S1.39)

+ op(n
−1/2).

The smoothness assumption in Condition (5) implies that the function in the bracket of

(S1.39) belongs to a P-Donsker class by Example 19.7 in Van Der Vaart (1998). Now the

convergence of α̂n and β̂n leads to the desired conclusion that
√
nIb3n = oP (1). �

S2. Appendix C: Technical Proofs Related to Joint Estimation

We first prove the main theorem which shows the root-n consistency and asymptotic

normality of our estimators for the finite dimensional parameters. The overall structure

of the proof is similar to the one of Theorem 4.2. Thus, we skip some straightforward

intermediate steps and highlight the changes that we make. Some technical details are

separately verified in lemmas of this section.

Related to the P -Glivenko-Cantelli or P -Donsker property, it turns out that it is more

convenient to work with the bracketing entropy bounds. For that purpose, we collect the

necessary definitions from Van Der Vaart and Wellner (1996) as follows. The bracket-

ing number N[] (ε,F , ‖·‖2) for subclass F is defined to be the minimum of m such that

∃ fL1 , fU1 , ..., fLm, fUm for ∀f ∈ F , fLj ≤ f ≤ fUj for some j, and
∥∥fUj − fLj ∥∥2

≤ ε. Denote

H[] (ε,F , ‖·‖2) ≡ logN[] (ε,F , ‖·‖2).

We need a few more notations in order to characterize the consistency and rate of con-

vergence. Let p0 be the true density function and p be a member of the class of densities,

denoted by P . We denote

q̄ =
q + q0

2
,(S2.1)

P̄ ≡ {q̄ : q ∈ P},(S2.2)

P̄1/2 ≡ {q̄1/2 : q̄ ∈ P̄}.(S2.3)

We consider a ball (measured according to the Hellinger distance) around the true density

q0, intersected with P̄1/2 by

P̄1/2(δ) ≡ {q̄1/2 ∈ P̄1/2 : h(q̄, q0) ≤ δ},
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for some small positive δ. We refer to H[](u, P̄1/2(δ)) as the local entropy with bracketing

and its corresponding entropy integral is given by

J[](δ, P̄1/2(δ)) ≡
∫ δ

δ2/213
H[](u, P̄1/2(δ))du ∨ δ.

Similarly as in Geskus and Groeneboom (1997), we define the following density functions:

(S2.4)

qF (u, δ1, δ2, δ3;α, β) = δ1F (u;α, β)+δ2{F (u+α;α, β)−F (u;α, β)}+δ3{1−F (u+α;α, β)}.

We record Theorem 7.4 in Van de Geer (2000) which is needed to obtain the rate of

convergence in our context.

Lemma S2.1 (Theorem 7.4 in Van de Geer (2000)). Given a upper bound Ψ(δ) for the

entropy integral function in such a way that Ψ(δ)/δ2 is a non-increasing function of δ. Then

for a universal constant c and for δn → 0 such that

√
nδ2

n ≥ cΨ(δn),

then the likelihood estimator q̃n converges with rate Op (δn). In fact, there exist constants

L0, C0, s.t. for all L ≥ L0

Pr {h(q̄, q0) ≥ Lδn} ≤ C0 exp
(
−L2δ2

nn
)
.

The next lemma delivers the rate of convergence for the NPMLE in terms of L2 norm

uniformly over the finite dimensional parameter.

Lemma S2.2. Regarding the convergence by L2 norm, we have

(S2.5) sup
θ
‖ F̃n(u; θ)− F0(u; θ) ‖2= Op

(
log2 n× n−1/3

)
.

Proof. In order to obtain the rate of convergence, we need to first bound the entropy number

for the likelihood function:

F∆1i(X ′iβ; θ)× (F (X ′iβ + α; θ)− F (X ′iβ; θ))
∆2i × (1− F (X ′iβ + α; θ))

∆3i .

The only complication comes from the term

(S2.6) FD ≡
{√

F (x′β + α; θ)− F (x′β; θ) : (α, β, F )
}
.

Its entropy number can be bounded in the following way; see Example 3.3(b) of Van de

Geer (1993). If F (x′β + α; θ)− F (x′β; θ) > δ or F̄ (x′β̄ + ᾱ; θ̄)− F̄ (x′β̄; θ̄) > δ, then∣∣∣∣√F (x′β + α; θ)− F (x′β; θ)−
√
F̄ (x′β̄ + ᾱ; θ̄)− F̄ (x′β̄; θ̄)

∣∣∣∣
<

1√
δ

{∣∣F (x′β + α; θ)− F̄ (x′β̄ + ᾱ; θ̄)
∣∣+
∣∣F (x′β; θ)− F̄ (x′β̄; θ̄)

∣∣} .
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If both F (x′β + α; θ)− F (x′β; θ) ≤ δ or F̄ (x′β̄ + ᾱ; θ̄)− F̄ (x′β̄; θ̄) ≤ δ, obviously one has∣∣∣∣√F (x′β + α; θ)− F (x′β; θ)−
√
F̄ (x′β̄ + ᾱ; θ̄)− F̄ (x′β̄; θ̄)

∣∣∣∣ ≤ 2
√
δ.

In sum, for any probability measure Q, we get

N(4
√
δ,FD, L2(Q)) ≤ N(δ,F0, L2(Q)),

where F0 ≡ {F (x′β + α; θ) : (α, β, F )}. Compared with the calculation in Van de Geer

(1993), one needs to account for the presence of finite dimensional parameter which incurs

an additional log n factor. Therefore, one can apply Lemma S2.1 to get

(S2.7) sup
θ

h(qF̃n,θ
, qF0,θ) = Op(log2 n× n−1/3).

Also, not that

(F̃n − F0)2 ≤ 4

(√
F̃n −

√
F0

)2

and (F̃n − F0)2 ≤ 4

(√
1− F̃n −

√
1− F0

)2

,

we get that

sup
θ
‖ F̃n(·; θ)− F0(·; θ) ‖= Op(log2 n× n−1/3).

�

Next, we fill the details related to our proofs of the consistency and asymptotic normal-

ity for our joint estimation method. Specifically, we prove the existence of zero-crossing

points and show the stochastic equicontinuity of negligible terms related to our estimating

equations.

Existence of Zero-crossing Points. Recall that θ = (α, β′)′. The first coordinate of β is

normalized to be 1; i.e., the overall number of unknown parameters is equal to K. The

uniform convergence of the estimating equation leads to

(S2.8) Φn(θ) = Φ̇θ0(θ − θ0) + rn(θ),

where rn(θ) = op(1) + o(θ − θ0). We now define for h > 0,the function

(S2.9) Φn,h(θ) = Φ̇θ0(θ − θ0) + r̃n,h(θ),

with

(S2.10) r̃n,h(θ) = h−d
∫
kh(u1 − α) · · · kh(uK − βK)rn(u1, · · · , uK)du1 · · · duK ,

where k(·) is a standard kernel density function supported on [−1, 1] and β′ = (β1, · · · , βd)′.
Note that limh→0 r̃n,h(θ) = rn(θ).
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We re-parameterize as follows by defining

(S2.11) γ = Φ̇θ0θ, and γ0 = Φ̇θ0θ0.

This gives

(S2.12) Φn,h(θ) = γ − γ0 + r̃n,h(Φ̇
−1
θ0
γ).

Given the result in S2.8, the mapping

(S2.13) γ 7→ γ0 − r̃n(Φ̇−1
θ0
γ)

maps, for each δ > 0, the ball Bδ(γ0) = {γ : |γ − γ0| ≤ δ} into Bδ/2(γ0) = {γ : |γ −
γ0| ≤ δ/2} with probability approaching to 1. Therefore by Brouwer’s fixed point theorem

(Groeneboom and Hendrickx (2018)), the mapping

(S2.14) γ 7→ γ0 − r̃n,h(Φ̇−1
θ0
γ),

has a fixed point which we denote by γn,h. Let θn,h ≡ Φ̇−1
θ0
γn,h, then we have

(S2.15) Φn,h(θn,h) = 0

By compactness of the parameter space, the sequence (θn,1/k)
∞
k=1 must have a subsequence

(θn,1/kl) with a limit point θ̄n as l→∞. Finally, we prove as in Groeneboom and Hendrickx

(2018) that Φn(θ) has a crossing of zero at θ̄n by contradiction.

Suppose that the j-th component Φj
n of Φn does not have a crossing of zero at θ̄n. Then

there must be an open ball Bδ(θ̄n) = {θ : |θ − θ̄n| < δ} of θ̄n such that Φj
n has a constant

sign in Bδ(θ̄n), say Φj
n(θ) ≥ c > 0 for all θ ∈ Bδ(θ̄n) and some constant c > 0. Arguing as

Groeneboom and Hendrickx (2018), the j-th component of Φj
n,h of Φn,h satisfies

(S2.16) Φj
n,h(θ) ≥

c

2
,

for sufficiently small h and all θ ∈ Bδ(θ̄n), which contradicting S2.15, since θn,h for h = 1/kl

belongs to Bδ(θ̄n) for large kl. �

Lemma S2.3. Under our conditions, we get

(Pn − P )ζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n)) = Pnζ(Z;α0, β0, F0) + op(n
−1/2),

and

P [ζ(Z; α̃n, β̃n, F̃n(·; α̃n, β̃n))− ζ(Z;α0, β0, F̃n(·;α0, β0))]

= P [ζ(Z; α̃n, β̃n, F0(·; α̃n, β̃n))− ζ(Z;α0, β0, F0(·))] + op(n
−1/2).

Proof. The proof essentially follows from Lemma S1.4 by the stochastic equicontinuity of

the related P-Donsker classes. The only minor change applies to the functional class that
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the NPMLE F̃n belongs to, given that the NPMLE is a sub-distribution or a defective

distribution. However, the entropy bound for the monotone functions in Lemma S1.3 does

not depend on the range of the function, as long as it is finite. Hence, the results follow. �

From now on, we drop the additional index θ in defining the NPMLE or its probabil-

ity limit with out confusion. Because the remaining proofs reduce to characterizing the

asymptotic property of the linear functional for the NPMLE given the data and the true

unknown parameter θ0. Also, we denote the empirical probability measure of the ordered

response data by Qn and its population version by QF0 where the distribution is set to be

the true unknown F0.

We mentioned in the main text that the NPMLE could be a defective distribution (or a

sub-distribution) in finite sample; i.e., F̃n(u) < 1 for any u in the support. However, this

plays a minor role regarding the large sample properties we study because the defectiveness

does not occur with probability 1 as sample size goes to infinity.

Lemma S2.4 (Proposition 1 in Geskus and Groeneboom (1997)). We have

lim
n→∞

Pr{F̃n is defective} = 0.

We need the following lemma which characterizes the NPMLE F̃n borrowed from Corol-

lary 1 in Geskus and Groeneboom (1997).

Lemma S2.5. Any function σ that is constant at the same intervals as F̃n satisfies

(S2.17)

∫
σ(u)

[
δ1

F̃n(u)
− 1− δ1 − δ2

1− F̃n(u+ α0)
+

δ2

F̃n(u+ α0)− F̃n(u)

]
dQn(u, δ1, δ2) = 0.

We also need to consider the piece-wise constant version of ξF which is constant on the

same intervals where the NPMLE F̃n(·;α, β) remains constant. Denote those intervals by

[τi, τi+1). We define

(S2.18) ξ̄(u) = ξF̃ (Ãn(u;α, β)),

where

Ãn(u;α, β) =


τi, if ∀t ∈ Ji : F0(t) > F̃n(τi;α, β),

s, if ∃s ∈ Ji : F0(s) = F̃n(s;α, β),

τi+1, if ∀t ∈ Ji : F0(t) < F̃n(τi;α, β),

for u ∈ Ji.
A key element in determining the asymptotic distribution of (α̃n, β̃n) is the linear func-

tional of NPMLE.
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Lemma S2.6. Under our conditions, we have

(S2.19)
√
n(κ(F̃n)− κ(F0)) =

∫
φF0d(Qn −QF0) + op(n

−1/2).

Proof. The proof of this result requires several intermediate lemmas that we present after-

wards. Here we describe the crux of the arguments divided into the following main four

steps.

Step 1. The first step is to rewrite the effect from estimating the distribution using

NPMLE in terms of its linear functional:

(S2.20)
√
n(κ(F̃n)− κ(F0)) =

√
n

∫
κ̃F0d(F̃n − F0).

Step 2. The second step is similar as in the proof of our Lemma S1.6 where we apply

the integration-by-parts. Now we have

(S2.21)

∫
κ̃F0d(F̃n − F0) = −

∫
φF̃n

dQF0 ,

in our Lemma S2.9, utilizing the relationship between the linear operator L and its adjoint

L∗.

Step 3. Next, we need to consider the piecewise approximation of φF which has the

same jump locations as the NPMLE. By the characterization lemma S2.5, one gets∫
φ̄F̃n

dQn = 0.

Thus, we have

(S2.22) −
∫
φF̃n

dQF0 = −
∫
φ̄F̃n

d(Qn −QF0) + op(n
−1/2),

in which we have used that ∫ (
φ̄F̃n
− φF̃n

)
dQF0 = op(n

−1/2),

as proved in our Lemma S2.10.

Step 4. In the last step, we proceed with the following decomposition

(S2.23) −
∫
φ̄F̃n

dQF0 = −
∫
φF0d(Qn −QF0) +

∫ [
φ̄F̃n
− φF0

]
d(Qn −QF0),

where the second term is shown to be negligible asymptotically. Note that φF is the

integrated score function, therefore it is absolutely continuous with respect to F ; also see

our Lemma S2.7. Given that all F are (sub) distribution functions, then φF is of bounded

variation, so is its piece-wise constant approximation φ̄F . Therefore, one can show that the

random entropy integral as a function of δ is of order Op(δ
1/2) for the functional class that
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includes (φ̄F̃n
− φF0). And then by the uniform consistency of F̃n, we get∫ (

φ̄F̃n
− φF0

)2
dQF0 → 0,

with probability 1. Now,
∫ [
φ̄F̃n
− φF0

]
d(Qn−QF0) = op(n

−1/2) follows from the stochastic

equicontinuity of the related P-Donsker class. In the end, we arrive at

(S2.24) −
∫
φ̄F̃n

dQF0 = −
∫
φF0d(Qn −QF0) + op(n

−1/2).

�

Next, we list a few intermediate lemmas that are similar as the ones in Appendix B, so

instead of presenting the full proofs we only highlight the necessary changes. First, the

following lemma states that the piece-wise constant function ξ̄(u) is absolutely continuous

w.r.t the NPMLE F̃n, combining the closed-form expression of φF in Van de Geer (1997)

and the proof of Lemma 4 in Geskus and Groeneboom (1996).

Lemma S2.7. The derivative of φF at the points of continuity is bounded, uniformly over

F and the points of continuity; i.e.,

(S2.25) |φF (y)− φF (x)| ≤ C1|y − x|,

for y and x in the same interval between jumps and a finite positive constant C1. Moreover,

the jumps satisfy

(S2.26) |φF (x)− φF (x−)| ≤ C2|F (x)− F (x−)|,

with a finite positive constant C2.

The next lemma controls the approximation error for a function ξ with respect to its

piece-wise version ξ̄ determined by the NPMLE. The proof is identical to the one of Lemma

S1.8.

Lemma S2.8. Suppose our Conditions hold, then we have

(S2.27) ‖ ξ̄F̃n
(u)− ξF̃n

(u) ‖2.‖ F̃n(u;α0, β0)− F0(u) ‖2 .

Lemma S2.9. Under our conditions, We have

(S2.28)

∫
κ̃F0d(F̃n − F0) = −

∫
φF̃n

dQF0 .

Proof. The idea of the proof follows from Lemma 1 in Geskus and Groeneboom (1997)[p.251].

Let 1 ∈ L2(F ) denote the constant function 1(u) ≡ 1 for any u ∈ [CL, CU ]. Note that for
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this constant function, L(1) = 1 after applying the L transform. Thus, we have∫
φFdQF0 = 〈φF , L(1)〉QF0

= 〈L∗φF , 1〉F0 =

∫
L∗(φF )dF0.

The desired conclusion immediately follows if we can show

(S2.29) L∗(φF ) = κ̃F0 −
∫
κF0dF,

and then set F equal to F̃n. To see this, recall the solution φF0 is obtained by differentiating

 L∗φF (u) = κ̃F (u) with φF = φF0 . Then by integrating, we get

 L∗φF (u) = κ̃F0(u) + C,

for some constant C. To pin down this constant term, we use the fact that F is non-defective

so that

C =

∫
CdF

=

∫
L∗φFdF −

∫
κ̃F0dF = 〈L∗φF , 1〉F −

∫
κ̃F0dF.

Now it is immediate that φF is contained in L0
2(QF ). We also have

〈L∗φF , 1〉F = 〈φF , L(1)〉F = 〈φF , 1〉F = 0,

which completes the proof. �

The following lemma characterizes some smaller order term in our Step 3 while analyzing
√
n(κ(F̃n)− κ(F0).

Lemma S2.10. Under our conditions, we have

(S2.30)

∫ (
φ̄F̃n
− φF̃n

)
dQF0 = op(n

−1/2).

Proof. We start by defining the function ϕn

ϕn(u) = −
[
φ̄F̃n
− φF̃n

]
(u, 0, 1)F0(u)

−
[
φ̄F̃n
− φF̃n

]
(u, 1, 0)[F0(u+ α0)− F0(u)] +

[
φ̄F̃n
− φF̃n

]
(u, 0, 0)[1− F0(u+ α0)],
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and the function ξF through the relationship ξF (u) ≡ φF (u)F (u)(1− F (u+ α0)).

Then we obtain

ϕn(u) =
1− F̃n(u)

F̃n(u+ α0)− F̃n(u)

(
ξ̄F̃n

(u)− ξF̃n
(u)
)

×
[
F0(u+ α0)(F̃n(u)− F0(u)) + F0(u)(F0(u+ α0)− F̃n(u+ α0))

]
− F̃n(u+ α0)

F̃n(u+ α0)− F̃n(u)

(
ξ̄F̃n

(u+ α0)− ξF̃n
(u+ α0)

)
×
[
(1− F0(u+ α0))(F̃n(u)− F0(u)) + (1− F0(u))(F0(u+ α0)− F̃n(u+ α0))

]
.

We apply the Cauchy-Schwarz inequality to get

(S2.31)

∣∣∣∣∫ (φ̄F̃n
− φF̃n

)
dQF0

∣∣∣∣ ≤ C ‖ ξ̄F̃n
− ξF̃n

‖2 × ‖ F̃n − F0 ‖2 .

Following the analogous argument as in the proof of our Lemma S1.8, we get

|ξ̄F̃n
(u)− ξF̃n

(u)| ≤ C|F̃n(u)− F0(u)|.

Now the result follows from the convergence result that ‖ F̃n(u) − F0(u) ‖2= Op(log2 n ×
n−1/3). �

We complete the section by computing the Hessian matrix related to our joint estimation

method.

Lemma S2.11. Recall that the Hessian matrix is

H(α, β) ≡

(
E[−X ∂

∂α
F (X ′β;α, β)] E[−X ∂

∂β
F (X ′β;α, β)]

E[− ∂
∂α
F (X ′β + α;α, β)] E[− ∂

∂β′F (X ′β + α;α, β)]

)
,

then we have

H0 ≡ H(α0, β0) = −

(
E[(X − E[X|X ′β0])f0(X ′β0)] E[(X − E[X|X ′β0])⊗2f0(X ′β0)]

E[f0(X ′β0 + α0)] E[(X − E[X|X ′β0])′f0(X ′β0 + α0)]

)
.

Proof. In order to avoid repetition, we only show that

E[
∂

∂β′
F (X ′β + α;α, β)]|α=α0,β=β0 = E[(X − E[X|X ′β0])′f0(X ′β0 + α0)].

First of all, we have

F (u;α, β) ≡ E[∆3|X ′β+α = u] =

∫
F0(u+x′(β0−β)+α0−α)fX|(X′β+α)(x|X ′β+α = u)dx.

Because the first slope coefficient is normalized to be 1. We denote the conditional density

function of (X2, · · · , XK) given X ′β + α = u by hθ(·|u). We make the following change of

variable by taking t1 = x′β + α and tj = xj for j = 2, · · · , K.
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Then we can write

F (x′β+α;α, β) =

∫
F0

(
(x′β + α−

K∑
j=2

βjx̃j) + α0 +
K∑
j=2

β0jx̃j

)
hθ(x̃2, · · · , x̃K |x′β+α)ΠK

j=2dx̃j

Now we take partial derivative w.r.t. βj for j = 2, · · · , K:

∂

∂βj
F (x′β + α;α, β)

(S2.32)

=

∫
(xj − x̃j)f0

(
(x′β + α−

K∑
j=2

βjx̃j) + α0 +
K∑
j=2

β0jx̃j

)
hθ(x̃2, · · · , x̃K |x′β + α)ΠK

j=2dx̃j

+

∫
F0

(
(x′β + α−

K∑
j=2

βjx̃j) + α0 +
K∑
j=2

β0jx̃j

)
∂

∂βj
hθ(x̃2, · · · , x̃K |x′β + α)ΠK

j=2dx̃j.

It is evident that the first term on the right-hand side of (S2.32) is equal to E[(X −
E[X|X ′β0])′f0(X ′β0 + α0)]. Because the function hθ(·|u) is a conditional density func-

tion that integrates to 1, the second term on the right-hand side of (S2.32) is zero, when

evaluated at θ = θ0. Therefore, the desired result follows. �
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