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Abstract

Applying a Panel Fixed Effect model to a large dataset of migration and local

weather conditions in 16 sub-Saharan African (SSA) countries, this study estimates

the impacts of long-term weather aberrations on within-country migration. To address

potential omitted variable bias, this study accounts for weather conditions in alter-

native places of residence–an aspect which has been overlooked by previous studies.

Results establish a causal link between climate change and migration, but this effect

is observed primarily in a block of West SSA countries. In this region, climate-related

relocation is driven by both long-term changes in weather (specifically rainfall and

temperature) and temperature volatility. In this region, climate-related relocation is

driven by both long term changes in weather (rainfall and temperature) and tempera-

ture volatility. Quantitatively, this study finds that over the last 30 years, an average

annual rainfall decline of 120mm increased internal migration by 14 percentage points

while a sustained average temperature increase of 0.5°C resulted in an 8 percentage

point rise in internal relocation. However, temperature fluctuations are found to low-

ered the odds of out-migration by 22 percentage points. Additional findings reveal that

increasing temperatures force climate migrants to travel to much farther destination

areas. However, we do not find evidence that adverse rainfall outcomes increase reloca-

tion distance. Additionally, We establish that climate migrants tend to relocate from

rural districts to urban centers. Finally, We obtain evidence that climate-related mo-

bility involves relocation of a family units, as suggested by the significance of climate

mobility of young children (less than 12 years old). Meanwhile, when the same spec-

ifications are applied on East SSA, we find weak evidence of climate-related mobility

in this region.
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1 Introduction

There exist growing concerns that weather shocks will greatly reduce habitability and

economic prospects of some parts of the world, and that this could trigger large scale

human displacement. The continued worsening of global climate outcomes in the form

of continued rising trends in global surface temperature and increased erratic-ness

of rainfall (World Meteorological Organization , WMO) justify these fears. In the

developing regions such as Africa where climate vulnerability is high (Wolde et al.

(2023), climate change has already heightened the risks of food insecurity and conflicts,

necessitating out-migration as one of the adaptation measures ((World Meteorological

Organization , WMO)). Current estimations by the Bank (2021) indicate that close to

a 100 million Africans could be forced to migrate within their own countries by 2050

due to the effects of changing weather patterns.

Understanding climate-induced mobility is critical because of its potential impacts

on both the receiving and the sending communities, as well as the migrants themselves.

Resultantly, scholarly efforts have led to a rapid growth in literature on this topic.

However, despite these efforts, uncertainty persists regarding the precise relationship

between climate change and migration (Bertoli et al. (2022), Wolde et al. (2023),

Helbling et al. (2023), Ofori et al. (2023)) – as existing research offers mixed results in

terms of direction, extent and significance of impact. This discourages policy efforts to

address the challenges related to potential increases in global climate-related migration

flows Hoffmann et al. (2020) and to explore migration as a viable adaptation measure

to climate change. Conversely, a better understanding of the nature and extent of

climate mobility will be important for crafting effective adaptation policies in both the

sending and receiving areas (Beltran and Hadzi-Vaskov (2023)).

Meanwhile, as the quest for evidence of climate-driven mobility continues, We iden-

tify a few research gaps to address. First, existing research has not considered weather

of the potential destination areas, leading to concerns about omitted variable bias.

Indeed, climatic conditions in both the place of origin and the destination play a cru-

cial role in explaining migration patterns. Unfavorable weather outcomes at the place
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of origin act as a push factor, compelling people to seek better prospects elsewhere.

Conversely, adverse weather conditions at the potential destination serve as a deter-

rent, discouraging migration. Similarly, favorable weather conditions in the source area

discourage out-migration, while desirable weather conditions in an alternative location

constitute a pull factor that attracts individuals seeking improved living conditions (see

Lee (1966) and Brettell and Hollifield (2013) for push and pull theory of migration).

Additionally, weather conditions tend to be spatially correlated, particularly for shorter

distances typically involved in internal relocation relative to international migration.

This provides further justification for controlling for weather of potential destination

areas.

Second, existing studies on sub-Saharan Africa region have individually covered only

a limited geographical extent. According to (Gray and Wise, 2016) and (Wolde et al.,

2023), prior to 2016, the bulk of research was country specific. Additionally, while

Bertoli et al. (2022) studied a larger sample of the 13 countries, their investigation

was confined to West Africa. Overall, the limited geographical coverage coupled with

diversity of findings has limited our ability to formulate general claims.

In view of the foregoing, we contribute to existing literature in two ways. First, we

take into account weather experiences in alternative locations. Secondly, our measure

of migration–which is a dummy of the difference between place of birth and place of

current residence–assists in constructing a consistent migration variable across SSA.

As a result, We are able to include a relatively large sample of 16 SSA countries in

my analysis. Furthermore, given a geographically diverse sample, We classify these

country samples into West SSA (9 countries) and East SSA (7 countries), achieving a

balanced representation between the western and eastern regions of SSA.

In addressing the causal impact of climate change on within-country relocation, our

study formulates and answers several key questions. First, we examine the causal effect

of long-term changes in temperature, rainfall, and volatility on migration. Second, we

explore heterogeneous effects across different age groups and genders. Additionally, we

assess whether climate-induced migration moves people from rural area to urban cen-
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ters and whether climate-driven migration influences the choice of relocation distance.

Lastly, our study investigates whether climate-induced mobility involves the relocation

of family units or individuals independently.

The outline of the rest of the study is as follows: Chapter 2 reviews related lit-

erature. Chapter 3 discusses data and construction of variables used in the analysis.

Chapter 4 lays out the identification strategy. Chapter 5 discusses estimation results.

Lastly, Chapter 6 concluded with policy implications, weaknesses of the study and

areas for future research.
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2 Literature Review

Climate change refers to persistent deviation of temperature and precipitation from

historical patterns. This is contrasted to short-term weather shocks, which are sudden

and extreme deviations from typical weather lasting for a relatively shorter period.

While weather shocks have been a common experience over the stretch of human exis-

tence, climate change is a more recent phenomenon primarily driven by anthropogenic

global warming (Pörtner et al., 2022). However, the two concepts are related in that

climate change has been linked to the frequency and severity of extreme weather events

(Hermans and McLeman (2021); Reed and Stringer (2016); Mueller et al. (2020b)).

The response of migration to climate change may differ depending on the magnitude

and suddenness of the weather shocks. Kaczan and Orgill-Meyer (2020) and Thiede

et al. (2016) distinguish between drastic changes in weather referred to as rapid on-set

shocks (such as heavy rain, tropical storms, heat waves) from broad-scale marginal

changes in the climate (specifically, in the patterns and levels of rainfall and tempera-

ture) referred to slow on-set shocks. Rapid on-set shocks may result in either migration

or not depending on whether they spare or destroy capabilities to emigrate. In contrast,

slow on-set shocks have also been found to explain migration ((Thiede et al., 2016),

(Missirian and Schlenker, 2017)). Similarly, Wolde et al. (2023) identify the so-called

direct and indirect environmental changes causing migration. They define direct envi-

ronmental change drivers as the prompt reason/cause for displacement while indirect

drivers as the slowly emerging or accumulated environmental changes putting pressure

on already vulnerable communities.

Literature further shows that climate-related migration responses can differ widely

across regions and countries even for the same climatic conditions (Bertoli et al. (2022),

Thiede et al. (2016)). This suggests that other factors may interact with climate shocks

in producing observed migration flows. Indeed, climate change heightens migration risk

through its role an additional stressor/threat multiplier. Migration incidence has been

shown to be interconnected with the need to escape unfavorable conflict-related condi-

tions and adverse economic/agricultural outcomes, usually to more urbanised destina-
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tions (Abel et al. (2019); Missirian and Schlenker (2017); Falco et al. (2019),Marchiori

et al. (2012),Wolde et al. (2023).

Several notable studies have been conducted on developing countries.

Thiede et al. (2016) employed logistic regression models on eight South American

countries in studying climate-induced mobility across provinces. They measured out-

migration as relocation to another province over the past five years prior to census.

Regarding weather, they assessed two aspects of climate change namely, intensity of

climate anomalies (slow-onset events) and cumulative exposure to climate extremes

(sudden-onset events). To enable valid cross-sample comparisons, they normalized

weather deviations from their respective historical means using z-scores. They ob-

served that while weather deviations measure intensity of climate change, they do not

identify exposure to extreme weather events such as droughts and floods. To measure

cumulative exposure to weather extremes, they count the number of monthly observa-

tions falling outside a 2-standard deviation threshold in a given observation window.

Their finding was that temperature extremes consistently explain migration in the re-

gion. Additionally, climate-migrants tend to move into urban. However, since their

census data did not indicate the urban status of the place of origin, they were unable

to confirm whether climate relocation is from rural to urban. [We will address this

issue in my study]. Thirdly, they acknowledge that climate effects on migration vary

by country and historical climate conditions.

Similarly, Bertoli et al. (2022) investigated the presence of a universally applicable

framework explaining climate-induced mobility in west Africa. Using data on migra-

tion intentions and localized weather shocks in a multilevel framework, over 2008-2016

period, they conducted a meta analysis on numerous competing regression specifica-

tions. They find that rainfall explains changes in migration intentions, albeit in a few

countries only. Overall, they conclude that the significance, sign and magnitude of

the effects are neither robust nor consistent across countries, making it challenging to

obtain a general link between climate change and migration.

Closely aligned with my study is notable research by Weinreb et al. (2020), who
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analyzed how changes in weather patterns affected rural-urban migration across 41 sub-

Saharan African countries, by age and sex, over the 1980–2015 period. They combine

age- and gender-specific estimates of net rural-urban migration with historical weather

data from the Climatic Research Unit (CRU). They employ pre-existing rural-urban

migration dataset constructed from a variant of the so-called census survival approach,

which utilizes population counts by age and sex for the rural and urban sectors at

two separate points in order to estimate time-specific net rural-to-urban migration

profiles. Their main deviation from prior literature is in weighting local weather by

population, which they argue that it more accurately reflects the rural population’s

experience of climate change. Differences in estimated impacts from weighted and

unweighted measures of weather suggest the extent to which unweighted findings are

distorted by patterns in relatively underpopulated areas. Their results reveal that rural

out-migration of young adults is the most responsive to shifts in weather patterns,

with lower rainfall, lower variability in rainfall, and higher temperatures increasing

subsequent rural out-migration. Further, they document that the strength of these

effects has grown stronger over time for 20–24 year olds, though weaker above age

30. In contrast, increasing temperature variability is associated with a higher rural

in-migration of children (0–9) and older adults (55–64). Gender differences in these

effects are minimal and concentrated in areas which experienced heavy reductions in

rainfall.

Mueller et al. (2020a) studied the response of human migration to climate vul-

nerability in low and middle-income countries in Africa. Employing census data on

migration from 4 million individuals from three middle-income African countries over

a 22-year period within country-specific fixed-effect logistic model specifications, they

link link these individuals to climate exposures in their origins and estimate climatic

effects on migration. While they uncover climate anomaly-related mobility in all sam-

pled countries, namely Botswana, Zambia and Kenya, the direction, magnitude and

significance differ by country. For instance, they report a 1-standard deviation increase

in temperature inhibits migration in Botswana by 19 percent. Additionally, 1-standard
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deviation increase in precipitation reduces migration in Botswana (11%) and Kenya

(10%), and increases in migration in Zambia (24%). Overall, the authors demonstrate

that temperature exerted a minimal influence of migration and precipitation anoma-

lies, though important, varied in direction of impact across the countries. Additionally,

they extended their analysis to the examination of the link between climate migration

and unemployment. Unclear patterns between weather anomalies, unemployment, and

inactivity cast doubt on claims that climate change fosters urbanization in Africa (as

advanced by Marchiori et al. (2012), for example)

Employing a diverse set of analytical tools in conducting a meta-analysis of 87 stud-

ies on environmental mobility in SSA, Wolde et al. (2023) explore whether and how

hydroclimatic variability has affected internal migration flows across 32 SSA. Their re-

sults reveal environmental migration is an outcome of a complex interplay between en-

vironmental factors and underlying non-environmental factors (political, economic, ad-

ministrative, social, and development processes that lead to the depletion/degradation

of natural resources). The impact of non-environmental factors on climate migration

is non-negligible, as they subject the population to cumulative environmental changes

and erode their resilience.

Nawrotzki and DeWaard (2018) pinpoint two sources of heterogeneity in climatic

impacts. First is differential vulnerability of populations to climate change. They

note that some populations are too materially poor to migrate, referred to as highly

vulnerable "trapped" groups. By the same line of argument, we can also argue that

some groups are materially well off that they can afford alternative adaptation mea-

sures. We refer these groups to as the climate resilient group. Second is the differential

vulnerability of places. The authors noted that patterns in climate-related migration

vary across regions, and sought to explore the distinguishing features of those regions

that inhibit climate migration. Combining climate information with aggregated census

micro data, they estimate gravity models of inter-district migration flows in Zam-

bia. They document that adverse climate conditions are linked to migration in only in

wealthier districts, while in poor districts people tend to remain despite climate-related
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challenges. Additionally, they indicate that, despite the limitations posed by poverty,

having access to migrant networks empowers individuals in the poorest districts to re-

locate in response climate-related factors. This offers a practical avenue for overcoming

mobility limitations.

Similar to the foregoing paper, Nawrotzki et al. (2017) note that adverse climatic

conditions may differentially influence human migration patterns between rural and

urban areas. They then investigate the relationship between climate shocks and mi-

gration between rural and urban areas within Mexico using Mexican censuses and

climate data from Terra Populus at municipal level. They measure climate shocks as

monthly deviations from a 30-year (1961–1990) long-term climate normal period and

specify quadratic and cubic relationships. Their analysis examines four internal mi-

gration permutations: rural-urban, rural-rural, urban-urban, and urban-rural. Among

other findings, they report that each additional drought month increases the odds of

rural-urban migration by 3.6%.

...

Although the approach by Weinreb et al. (2020) is similar to my study, important

differences emerge. First, their measure of rural-urban migration is at national level,

implying that they conducted a macro-level analysis, with country-agegroup-gender as

unit of analysis. In contrast, We use out-migration dummy at individual level. My

approach and data allows locating precisely the respondents’ area of origin and cur-

rent place of residence. This allows me to identify the more precisely the weather

conditions the individual was exposed to. Secondly and related to the first, their

weather data is aggregated at national level, which overlooks the within-country vari-

ation in weather outcomes. Thirdly, the study assumes linearity in migration response

to weather shocks. In contrast, We consider non-linear relationship.
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3 Data

3.1 Migration and other census data

Since our goal is to regress migration incidence on weather changes, we obtained mi-

gration measure from national census data of each of the 21 SSA countries supplied by

the Integrated Public Use Microdata Series (IPUMS) International (Minnesota Popu-

lation Center, 2015) Inspired by Blocher et al. (2021) we define migration as relocation

from birthplace. Thus, migration incidence was observed by the "mismatch" between

an individual’s current place of residence and place of birth at a census day, other-

wise migration did not occur (birthplace-based migration dummy). This approach was

preferred as it resolved the inconsistencies in measurement of migration across coun-

tries, which enabled us to pool more countries together. Again, since our sample is

large enough, we were able to subsample by age groups and gender, making a more

detailed analysis of climate-induced mobility possible. We defined place of origin and

destination by the administrative boundary level used for recording birthplace in the

census. That is, if a census recorded place of birth at district level, then our measure

of migration will be from district to district and if the official record is at regional level,

then our measure will also be at regional level.

4 Weather data

We obtained a rich panel of 5-degree by 5-degree gridded monthly mean tempera-

ture and mean rainfall data from Climatic Research Unit (CRU) of University of East

Anglia. The data, netCDF (CRU version 4.7) file, are have a global cross sectional cov-

erage and 1901-2022 time span. For the purposes of this study, we cut the data to full

geographic extents of each of the 16 countries. In addition, since the impact of climate

change on migration in SSA is likely to be manifested through impact on agriculture

as established by Missirian and Schlenker (2017) and Falco et al. (2019), we restricted

weather data only to the crop growing months in each country. The exception for this

restriction were those countries which did not have a clearly defined growing season or
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those whose growing seasons varied substantially across space. For extracting weather

data according to location of analysis, we used appropriate administrative boundary

maps for each country, which were shapefiles obtained from IPUMS International. Ad-

ditionally, since the CRU data are monthly frequency data, our calculation of average

mean temperature and mean rainfall over a growing season should be read as average

monthly temperature and rainfall in a growing season.

Close inspection of weather data for SSA confirms on-going climate change. From

Figure 3.1, we observe that beginning around 1980, temperatures assumed a permanent

upward shift–hence climate change. Our reading is that SSA became hotter by more

than 0.5 C on average over the past 40 years.
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Figure 1: Trends in Mean Weather in SSA
 

 

 

Notes: In the above figure, the left hand side chart depicts trends in temperature while the
right hand side graph plots the evolution of rainfall in SSA. Both temperature and rainfall
are smoothed (that is, they are 10 year moving averages) in order to depict trends more
finely. The green and red lines represent West and East SSA, respectively. All 46 SSA
countries were used for producing these charts. Source: Climatic Research Unit of UEA;
Plots: Kamuikeni & Naito (2024)

At the same time, while several authoritative sources link climate change to erratic

rainfall (World Meteorological Organization , WMO, Pörtner et al., 2022), our analysis

of climate data further reveals a general and lasting downward shift in amounts of

rainfall received in SSA. From the same figure, we note that the volume of rainfall

decreased by about 10 mm a month (about 120 mm a year) on average since 1980s.

Similarly, in East SSA, rainfall amounts declined by roughly 2.5 mm a month (about

30 mm a year) beginning 1990s.

Although climate change is discussed in terms of general trends, we observe that

all countries in SSA have undergone warming. Furthermore, while temperatures are

notably cooler in East SSA compared to West SSA, eastern SSA is warming at a

significantly faster rate (as depicted in Figure 3.2, panel A). Specifically, over the past

70 years, Uganda, Kenya, and South Africa have seen a warming of 1.5°C. In contrast,

Madagascar has warmed the least.
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In terms of rainfall, countries have experienced diverse outcomes (Figure 3.2, Panel

B). The two countries, Uganda and Kenya, that experienced the largest increases in

temperature also saw the greatest increases in the amounts of rainfall received. In con-

trast, several of the westernmost countries in SSA experienced declines in the amounts

of rainfall received. However, for most countries overall, the changes in rainfall amounts

were relatively small.
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Figure 2: Heat Maps of Weather in SSA

Panel A: Temperature

 

 

 

 

 

 

 

Panel B: Rainfall 

 

 

 

 

 

 

Notes: In each panel of the above figure, the first heat map depicts historical weather averages
over 1901-1950 period. The second one shows recent weather averages over 2011-2022. The
third heat map is the difference between the first and second heat maps. Thus, in the heading
of the third heat map, 2020 represents averages over 2011-2022 and 1950 stands for averages
over 1901-1950 period. Source: Climatic Research Unit of UEA; Plots: Kamuikeni & Naito
(2024)

5 Combining census and weather data

In integrating weather data with migration data, the challenge is that census-based

migration data are collected decennially, while CRU weather data are reported monthly.

To address this, we calculated the average monthly weather data over a twenty-year
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period leading up to each census. Our objective was to create a summary measure of

weather exposure during a relevant pre-census period. While our baseline time frame

is 20 years before census, we additionally explored alternative time windows (such as

10 and 30 years) preceding each census year as shown in Table 3.2. We reserved these

alternative measures for performing robustness checks.

Table 1: Schematic Diagram of Time Spans of Weather Data used in the Analysis
 

 

 

 

10 years 10 years 10 years 

 
 

20 years 

30 years 

Census year 

Additionally, it appeared necessary to define the demographic characteristics of

a typical weather migrant. In this regard, we hypothesized that these migrants are

commonly out-of-school individuals in the age range of 22 to 49 years old. Further,

migration patterns may be different across different age groups and gender. In view

of this, we constructed two age groups of ages 22-32 and 33-49 and maintained the

sex variable. Additionally, we obtained migration record for young children age below

12 years old. Assessing whether the climate mobility patterns of these young chil-

dren match those of adults would provide evidence on the question of whether climate

migrants relocate with their families.

Incidentally, there appears to be an advantage to constructing the age groups as

22-32, 33-49 and 0-11. In developing countries, age misreporting tends to be high, in

which individuals approximate their ages. We confirmed this by plotting histograms
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of ages and noticed spikes on ages 10, 15, 20, 25, 30, 35, 40, 45, so on, suggesting

that respondents round off their ages to nearest multiple of 5 (Chart to be shown in

Appendix).
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Table 2: Definition of Weather Variables

Weather Variable Description 

(1) (2) 

1. Recent past mean rainfall Mean of total monthly 

rainfall 

Calculated over the past 10, 20, 

30 years or other periods prior to 

census depending on the time 

span of interest. The word 

“recent” distinguishes it from 

“historical long term” averages. 

2. Recent past mean temperature Mean of monthly average 

temperatures  

3. Standard deviation of rainfall The standard deviation of 

annualized mean monthly 

rainfall  

Calculated over the past 10, 20, 

30 years or other periods prior to 

census. The deviation from the 

mean is calculated in two ways: 

As (1) deviation from recent past 

(within the data) mean or (2) 

deviation from historical 1901-

1950 average. 

4. Standard deviation of temperature The standard deviation of 

annualized mean monthly 

temperature  

5. Coefficient of variation of rainfall This is the normalization of 

standard deviation of 

rainfall by its mean 

Useful for accounting for 

sensitivity of standard deviation 

to the sizes of the numbers in the 

data set. (i.e. large number 

datasets tend to have bigger 

standard deviation than small 

number datasets). 

6. Coefficient of variation of 

temperature 

This is the normalization of 

standard deviation of 

temperature by its mean  

 

6 Key Weather Variables

From the constructed measures of weather exposure, we define several key explanatory

variables that capture exposure to long term climate variability (Table 3.2). [Explain

table 3.2]. Similar to Thiede et al. (2016), who standardized their measures of 5-

year temperature and rainfall conditions to allow comparability across locations and

countries, our study normalises the standard deviation of recent past temperatures

and rainfall using mean. The idea is that, standard deviation as a measure of volatility

of weather outcomes is sensitive to magnitude of the data points themselves. Thus,

a dataset with large numbers will typically give larger standard deviation compared

to data sets with small numbers. In perspective, as we observed from Figure 1 that
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temperature and rainfall levels are significantly higher in west SSA than in East SSA.

Thus, failing to account for this feature of the data may invalidate any comparisons

between East and West in terms of weather changes. We normalise standard deviation

measure by dividing by the sample mean.

7 Limitations of the data

Our migration measure lacks information on the timing of relocation. Although it

enables us to expand the country sample by providing a consistent measure across

countries, we cannot account for individual-specific characteristics such as schooling

due to the absence of migration timing. Understanding when migration occured is

crucial for assessing the individual characteristics that existed before the migration.

Scarcity of more recent census and migration data. Most of the census data avail-

able are from over 15 years ago. This results in loss of valuable information over a

considerable stretch of time.

8 Estimation Strategy

This study examines the relationship between climate change and migration using

a Panel Fixed Effects (Panel FE) model. This model is preferable for addressing

unobserved time-invariant heterogeneity. As Weinreb et al. (2020) notes, a number

of unmeasured factors could influence the relationship between climate variability and

migration, including topographical variations across countries, soil quality and tree

coverage, traditional systems of agricultural land ownership, and variable standards

for defining urban and rural boundaries. Some of these vary significantly over time,

while others are fixed or at least relatively stable. They accounted for some of these

factors (i.e. the time-stable factors) using within-country fixed effects. Additionally,

while weather shocks are fairly exogenous, controlling for fixed effects may enhance the

precision of my estimates (CITE). The model is as follows:
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Yitjc = β0 +
m∑

h=1

βhXtjch +
n∑

k=m+1

βkZtjck + αj + αt + αct + εtkci (1)

where Yitjc is a dummy of outmigration, which is equal to 1 if an individual i at

census year t in location j of country c lives in a location different from his/her birth

location and 0 if he/she still lives in his/her birthplace. It then follows that E[Yitjc] =

prob(Yitcj = 1), which is probability of outmigration. Xtjc is a measure of weather

corresponding to census year t in location j of country c. Ztjck is a vector of confounding

factors, particularly weather conditions in alternative places of residence, measured

in exactly the same way as in the place of origin. αj are birthplace fixed effects for

accounting for unobserved heterogeneity across birth locations, αt are time fixed effects

for accounting for time varying common shocks to all locations. αct is an interaction of

term for country-specific fixed effect and census year fixed effect. It controls for non-

uniform variation of time FE across countries. This is particularly useful for accounting

for the fact that different countries conduct censuses at different time points.

To ensure that we capture (long-term) climate change effects, we compare devel-

opments between two time periods with an interval ranging between 20 to 40 years

depending on available census data for a country. Technically, we achieve this interval

by obtaining migration and weather data consistent with the latest and oldest available

censuses for each country. Essentially, we utilize two census waves for each country.

For countries whose census data was available only as a single wave, such as Ethiopia,

we were unable to incorporate them in to our sample because of incompatibility with

our Panel FE method.

Migration status is calculated from census data, and corresponding weather data is

the average weather outcomes over the last 20 years prior to census. The specification

is nonlinear, where mean rainfall and mean temperature together with their squared

terms; standard deviations of annual mean rainfall and mean temperature are the key

explanatory variables.

The unit of analysis is individual. Thus, from census data, a large dataset is
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available from which We are able to performing sub-sampling in exploring additional

research questions, including heterogeneous impacts across regions, gender, age, as well

as the preferred destination type (rural/urban) of rural climate migrants.

Several pieces of literature demonstrate that the channel for climate-driven mobility

in regions that are highly dependent on rain-fed agriculture such as SSA is agricultural

productivity (Missirian and Schlenker (2017), Falco et al. (2019)). Therefore, in this

research, we rely primarily on weather data that are restricted to agricultural season.

However, as the onset and closing of growing seasons can vary within the same country

and over time, we also perform robustness checks where the growing season restriction

is relaxed entirely.

Additionally, our measure of exposure to climate change is to average monthly

weather outcomes over the last 20 years before census for mean weather variable .

Similarly for standard deviation of weather, we compute average deviation of weather

over the past 20 years prior to census. This means we are linking outmigration inci-

dence to average weather conditions in the last 20 years. Admittedly, the weakness

of this approach is that some individuals might have migrated over 20 years ago, and

therefore, were unexposed to this average weather. Similarly, other individuals might

have relocated more recently that the 20 year average weather may not be quite rep-

resentative of their climatic experiences. We address this concern in the robustness

checks where we construct alternative measures of weather by splitting the 20 year

pre-census period into two 10 year periods. Therefore, we estimate additional regres-

sions where weather is observed over the past 10 years prior to census and also over

the past 10 years before the 10 years leading up to census.

Lastly, we note that migration may respond not only to temperature and rainfall

fluctuations around their recent mean, but also around their historical mean. Thus,

we also check this possibility in the robustness checks by measuring standard devia-

tion/coefficent of variation of weather as deviation from historical normal mean.
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9 Estimation Results

9.1 Descriptive statistics

Tables 3 and 4 shows the summary of weather and migration experiences of young

working age adults aged 22-32 in East and West SSA, respectively. Since our bench-

mark specification (see Chapter 4) is one where summary measures of weather are

calculated over the growing season covering a period of 20 years before census, the

weather variables presented in the two tables have been computed in this way.

Birthplace-based out-migration rates for 22-32 age group stood at 28% in East SSA,

marginally higher than 27.5% in West SSA and with the same standard deviation of

0.45.
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Table 3: Descriptive Statistics of Variables: East SSA

VARIABLES mean sd min max

Country 646.639 208.089 72.000 894.000

Census year 2003.020 11.063 1969.000 2018.000

Age 26.675 3.138 22.000 32.000

Out-migration 0.279 0.448 0.000 1.000

Recent mean rain (in decimetres) 1.251 0.335 0.353 2.318

Recent mean temperature (°C) 23.302 2.488 14.387 28.897

Rainfall  standard deviation 0.231 0.091 0.066 0.578

Temperature standard deviation 0.326 0.072 0.193 0.666

Rainfall coefficient of variation 0.188 0.068 0.063 0.387

Temperature coefficient of variation 0.014 0.003 0.008 0.029

N 3,949,270
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Table 4: Descriptive Statistics of Variables: West SSA

VARIABLES mean sd min max

Country 434.428 246.210 120.000 854.000

Census year 2002.507 11.888 1974.000 2015.000

Age 26.725 3.082 22.000 32.000

Out-migration 0.275 0.447 0.000 1.000

Recent mean rain (in decimetres) 1.468 1.012 0.034 4.592

Recent mean temperature (°C) 27.024 2.169 19.258 32.610

Rainfall  standard deviation 0.150 0.081 0.004 0.648

Temperature standard deviation 0.296 0.074 0.145 0.523

Rainfall coefficient of variation 0.125 0.054 0.027 0.385

Temperature coefficient of variation 0.011 0.002 0.005 0.020

N 2,698,961
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Additionally, our study is interested in climate-driven mobility of the middle aged

economically active group aged 33-49 to quantify any age group-related heterogeneity of

climatic impacts, as well in young children aged below 12 to determine familial climate-

related mobility patterns. Summary statistics show that out-migration prevalence for

age group 33-49 was the same as for 22-32 age group. Meanwhile, children relocated

from their birthplace at an average rate of 10.4 % in the East and 10.8% in the West

(table not shown). Exposure to weather remains the same.

10 Estimation Results

10.1 West SSA

Table 5 reports coefficient estimates of the impact of climate change on within-country

migration in West SSA. Results indicate the existence of climate-induced internal mo-

bility within West SSA countries. We establish the channel of impact to be both

changes in mean rainfall and mean temperature, and also fluctuations in temperature.

Quantitatively, the marginal effect (β1 + 2β2X) of rainfall when rainfall is at average

level of 1.5 dm (see summary statistics), the overall decrease in rainfall is 0.1 dm (see

Figure 1) and we use estimates from column 3 is: -0.095 -9.5 percentage points.

Similarly, marginal effect of temperature when temperature is about 27 °C (average

over the sample period) and change in temperature is 0.5 °C (see Figure 1) is: 0.125

12.5 percentage points.

However, given that the squared term of temperature is negative, it suggests that

increasing temperatures progressively limit migration. The implication is that, as ar-

eas become hotter due to climate change, people will be unable to move out. This

is a puzzling finding. The standard hypothesis is that ever increasing temperatures

are detrimental to agriculture and as yield declines due to adverse climatic conditions,

an increasing number of people would be moving out of the affected areas. However,

Kaczan and Orgill-Meyer (2020) and Thiede et al. (2016) justify the observation that

warming would eventually reduce the probability of out-migration by pointing out that

such adverse climatic incomes would weaken the economic well-being of populations,
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rendering migration unaffordable. This situation has been referred to as the incapa-

bility to migrate (Kaczan and Orgill-Meyer, 2020) and migration inhibitor mechanism

(Thiede et al., 2016).

Table 5: Estimates of Climate-Driven Migration: West SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) -0.9957* -0.9772** -1.4238*** -1.1074*

(0.5487) (0.4945) (0.4857) (0.5694)

Recent mean temperature (°C) 2.8245*** 2.0635*** 3.6211*** 3.1345***

(0.9049) (0.6836) (1.1685) (0.9939)

Recent mean rainfall square 0.0892 0.1201* 0.1578** 0.1099

(0.0833) (0.0690) (0.0725) (0.0792)

Recent mean temperature square -0.0477*** -0.0386*** -0.0624*** -0.0528***

(0.0154) (0.0117) (0.0202) (0.0173)

Rainfall, coefficient of variation 1.0865 0.5773 0.8667 1.3417*

(0.6928) (0.6788) (1.1133) (0.8103)

Temperature, coefficient of variation -69.6571** -28.9760** -102.5348*** -125.3149***

(29.1282) (14.1185) (37.2313) (38.2307)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Both Both Both Both

N 2,698,961 2,698,961 2,698,961 2,698,961

R-squared 0.1390 0.1433 0.1409 0.1413

Notes: Clustering robust standard errors in parentheses assuming that the error terms 

are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Additionally, we find that failure to account for weather of potential destinations

would understate the estimated impacts.

We also consider heterogeneous effects across age groups. Applying the specification

on age group 33-49 yielded the following result:

Table 6: Estimates of Climate-Driven Migration: West SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) -0.9832* -0.8156 -1.2201** -0.9173

(0.5736) (0.5114) (0.5127) (0.5568)

Recent mean temperature (°C) 2.7176*** 1.8541*** 3.6101*** 3.1404***

(0.8918) (0.6625) (1.1705) (0.9651)

Recent mean rainfall square 0.0643 0.0837 0.1048 0.0589

(0.0886) (0.0735) (0.0799) (0.0821)

Recent mean temperature square -0.0458*** -0.0349*** -0.0615*** -0.0520***

(0.0152) (0.0113) (0.0202) (0.0168)

Rainfall, coefficient of variation 0.9314 0.5098 0.9138 1.3445

(0.7396) (0.7250) (1.1555) (0.8604)

Temperature, coefficient of variation -76.3701** -35.9721** -114.2011*** -133.9981***

(30.6791) (14.6465) (38.5203) (39.5588)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 33-49 33-49 33-49 33-49

Gender Both Both Both Both

N 2,313,731 2,313,731 2,313,731 2,313,731

R-squared 0.1345 0.1391 0.1366 0.1372

Notes: Clustering robust standard errors in parentheses assuming that the error terms 

are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration

From this table (Table 5.4), we see that for model 3, coefficients of rainfall, tem-

perature and volatility in temperature retain their significance and signs.
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Similarly, when we estimated for young children, we obtained consistent results the

sizes of the estimated coefficients between the regressions for children and adults are

comparable (Table 5.5). This outcome confirms that adults respond to climatic shocks

by migrating away with their families.

Table 7: Estimates of Climate-Driven Migration: West SSA, Children

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) -0.9872* -1.0864*** -1.3524*** -1.1605**

(0.5258) (0.4114) (0.4545) (0.4486)

Recent mean temperature (°C) 1.8074* 0.6792 2.5861** 2.2396**

(0.9422) (0.7336) (1.1026) (1.0556)

Recent mean rainfall square 0.0935 0.1239** 0.1448** 0.1120*

(0.0766) (0.0571) (0.0633) (0.0617)

Recent mean temperature square -0.0299* -0.0150 -0.0447** -0.0382**

(0.0159) (0.0124) (0.0189) (0.0179)

Rainfall, coefficient of variation 0.5735 0.0933 0.3532 0.8631

(0.6826) (0.6935) (1.1914) (0.8644)

Temperature, coefficient of variation -79.0193** -38.7210** -114.9597*** -143.8472***

(31.3544) (15.2341) (40.3630) (43.0578)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 0-11 0-11 0-11 0-11

Gender Both Both Both Both

N 6,138,663 6,138,663 6,138,663 6,138,663

R-squared 0.1931 0.2033 0.1980 0.2000

Notes: Clustering robust standard errors in parentheses assuming that the error terms 

are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Comparisons between genders revealed uniform responses to climate change.

Table 8: Estimates of Climate-Driven Migration: West SSA, Male

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) -0.8843 -0.8794* -1.3030*** -0.9126

(0.5493) (0.5206) (0.4982) (0.6105)

Recent mean temperature (°C) 2.5981*** 1.8447** 3.4262*** 2.8825***

(0.9712) (0.7569) (1.2384) (1.0717)

Recent mean rainfall square 0.0843 0.1102 0.1450** 0.0876

(0.0826) (0.0730) (0.0731) (0.0828)

Recent mean temperature square -0.0435*** -0.0347*** -0.0588*** -0.0481**

(0.0166) (0.0130) (0.0214) (0.0188)

Rainfall, coefficient of variation 1.1868* 0.5821 0.7762 1.2868

(0.7172) (0.6905) (1.1218) (0.8261)

Temperature, coefficient of variation -66.9664** -27.5430* -99.5159*** -121.6757***

(29.1226) (14.4736) (37.1650) (38.4289)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Male Male Male Male

N 1,227,523 1,227,523 1,227,523 1,227,523

R-squared 0.1424 0.1463 0.1443 0.1446

Notes: Clustering robust standard errors in parentheses assuming that the error terms 

are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Table 9: Estimates of Climate-Driven Migration: West SSA, Female

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) -1.0636* -1.0393** -1.4976*** -1.2327**

(0.5571) (0.4809) (0.4858) (0.5454)

Recent mean temperature (°C) 2.9978*** 2.2275*** 3.7908*** 3.3534***

(0.8674) (0.6480) (1.1383) (0.9558)

Recent mean rainfall square 0.0882 0.1241* 0.1632** 0.1219

(0.0855) (0.0673) (0.0740) (0.0779)

Recent mean temperature square -0.0509*** -0.0415*** -0.0654*** -0.0567***

(0.0147) (0.0111) (0.0196) (0.0166)

Rainfall, coefficient of variation 0.9879 0.5600 0.9318 1.3721*

(0.6785) (0.6741) (1.1082) (0.8030)

Temperature, coefficient of variation -71.3279** -29.9906** -104.4867*** -127.7530***

(29.1276) (14.0505) (37.2902) (38.0927)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Female Female Female Female

N 1,471,438 1,471,438 1,471,438 1,471,438

R-squared 0.1409 0.1459 0.1430 0.1435

Notes: Clustering robust standard errors in parentheses assuming that the error terms 

are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration

11 East SSA

When we applied the exact same specification to East SSA, we could not confirm that

climate change affects migration in this region (Table 5.8).
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While columns that take into account weather of alternative locations show some

evidence that volatility in rainfall reduces likelihood to migrate, the impacts are eco-

nomically too small (one standard deviation increase in rainfall fluctuations, leads to

only 4 percentage point (0.6247 x 0.068SD x 100) decrease in the odds of out-migration.

Similar to West SSA, assessment of the age group differences in climate responses

shows no material differences in climate migration behavior between age gropus 22-32

and 33-49 (Tables 5.8 and 5.9). However, young children (0-11 years old) appear to

respond by a lesser magnitude to climate variability (Table 5.10). But again, all age

group specific results do not show statistical significance in East SSA.
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Table 10: Estimates of Climate-Driven Migration: East SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) 0.3569 -0.4144 -0.4167 -0.4785*

(0.3822) (0.3202) (0.2767) (0.2435)

Recent mean temperature (°C) 0.0069 0.0214 -0.0196 0.0350

(0.0525) (0.0518) (0.0568) (0.1054)

Recent mean rainfall square -0.1178 0.1304 0.1074 0.1484

(0.1261) (0.1074) (0.0892) (0.0923)

Recent mean temperature square 0.0000 -0.0004 0.0003 -0.0008

(0.0012) (0.0014) (0.0014) (0.0024)

Rainfall, coefficient of variation -0.3240 -0.3888* -0.6247* -0.6584**

(0.2225) (0.2327) (0.3202) (0.3321)

Temperature, coefficient of variation 3.5476 5.5861 10.4752 9.7065

(6.6057) (9.1675) (12.3707) (9.5620)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Both Both Both Both

N 3,949,270 3,948,565 3,949,270 3,949,270

R-squared 0.0943 0.0951 0.0950 0.0951

Notes: Clustering robust standard errors in parentheses assuming that the error 

terms are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Table 11: Estimates of Climate-Driven Migration: East SSA, 33-49

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) 0.1775 -0.4707 -0.7422** -0.6788**

(0.4053) (0.3787) (0.2964) (0.3038)

Recent mean temperature (°C) 0.0414 0.0272 -0.0021 0.0501

(0.0433) (0.0472) (0.0536) (0.0986)

Recent mean rainfall square -0.0402 0.1484 0.2312** 0.2120*

(0.1314) (0.1248) (0.0933) (0.1080)

Recent mean temperature square -0.0008 -0.0005 -0.0002 -0.0013

(0.0011) (0.0013) (0.0014) (0.0023)

Rainfall, coefficient of variation -0.3194 -0.3521 -0.4726* -0.4805

(0.2026) (0.2145) (0.2831) (0.3019)

Temperature, coefficient of variation 6.4279 9.8592 10.7830 9.0205

(6.9328) (9.4281) (11.8301) (8.6500)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 33-49 33-49 33-49 33-49

Gender Both Both Both Both

N 3,186,135 3,185,443 3,186,135 3,186,135

R-squared 0.0987 0.0994 0.0996 0.0996

Notes: Clustering robust standard errors in parentheses assuming that the error 

terms are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Table 12: Estimates of Climate-Driven Migration: East SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) 0.3970 -0.2898 -0.3185 -0.2577

(0.2699) (0.2528) (0.1997) (0.1665)

Recent mean temperature (°C) 0.0067 0.0038 0.0272 0.0064

(0.0360) (0.0370) (0.0417) (0.0694)

Recent mean rainfall square -0.1022 0.0810 0.0834 0.0911

(0.0819) (0.0768) (0.0582) (0.0622)

Recent mean temperature square -0.0002 -0.0004 -0.0009 -0.0004

(0.0008) (0.0009) (0.0010) (0.0016)

Rainfall, coefficient of variation 0.1332 -0.1723 -0.3418 -0.0776

(0.2455) (0.3014) (0.3121) (0.4118)

Temperature, coefficient of variation -1.1695 -5.4512 1.1476 -2.5091

(7.4794) (11.0559) (15.7765) (12.9074)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 0-11 0-11 0-11 0-11

Gender Both Both Both Both

N 6,157,092 6,156,196 6,157,092 6,157,092

R-squared 0.0701 0.0713 0.0712 0.0713

Notes: Clustering robust standard errors in parentheses assuming that the error 

terms are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Gender heterogeneity Assessment of the gender differences in climate responses

shows that

35



Table 13: Estimates of Climate-Driven Migration: East SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) 0.3787 -0.5666* -0.4301 -0.5057*

(0.4133) (0.3338) (0.3430) (0.2675)

Recent mean temperature (°C) -0.0178 0.0124 -0.0452 0.0054

(0.0547) (0.0528) (0.0596) (0.1128)

Recent mean rainfall square -0.1219 0.1692 0.1021 0.1590*

(0.1367) (0.1084) (0.1021) (0.0947)

Recent mean temperature square 0.0007 -0.0003 0.0009 -0.0001

(0.0013) (0.0014) (0.0015) (0.0026)

Rainfall, coefficient of variation -0.4466* -0.6750** -0.8824** -0.9287**

(0.2462) (0.2789) (0.3673) (0.3745)

Temperature, coefficient of variation 4.1279 3.8860 13.1129 9.9811

(6.7598) (9.7771) (13.5693) (12.4087)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Male Male Male Male

N 1,840,428 1,840,077 1,840,428 1,840,428

R-squared 0.1040 0.1050 0.1048 0.1048

Notes: Clustering robust standard errors in parentheses assuming that the error 

terms are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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12 Robustness checks

We conduct a several robustness checks to ascertain the stability of our estimated

coefficients. First, we replace our measure of standard deviation of weather from within-

sample mean with standard deviation of weather from historical (1901-1950) average.

This way, we check whether migration responds to volatility of rainfall and temperature

around the historical mean.

The outcome of this test (reported in Appendix A) is similar to the original outcome

where standard deviation of weather was measured as dispersion around recent within-

sample average. All signs are maintained. East SSA continues to yield insignificant

result while West SSA retains evidence of climate-induced mobility. However, the

estimated coefficient of standard deviation of temperature declines by about half. This

implies that temperature fluctuations around the recent past mean are a stronger driver

of climate-related migration than temperature fluctuations around the historical mean.

As mentioned in the Estimation Strategy section, we aim to determine whether

calculating weather data over the last 10 years before the census, as opposed to 20

years, has a qualitative impact on our estimates.
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Table 14: Estimates of Climate-Driven Migration: East SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) 0.3270 -0.2869 -0.4116 -0.4676*

(0.3676) (0.3146) (0.2608) (0.2703)

Recent mean temperature (°C) 0.0293 0.0293 0.0040 0.0627

(0.0514) (0.0524) (0.0583) (0.1006)

Recent mean rainfall square -0.1074 0.1035 0.1192 0.1448

(0.1188) (0.1059) (0.0839) (0.0975)

Recent mean temperature square -0.0006 -0.0005 -0.0003 -0.0015

(0.0012) (0.0014) (0.0014) (0.0023)

Rainfall, coefficient of variation -0.1825 -0.0970 -0.3345 -0.3808

(0.2174) (0.2078) (0.2960) (0.3014)

Temperature, coefficient of variation 2.5386 7.0722 8.1010 9.7436

(6.5344) (8.4110) (11.1328) (7.7189)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Female Female Female Female

N 2,108,842 2,108,488 2,108,842 2,108,842

R-squared 0.0920 0.0927 0.0926 0.0927

Notes: Clustering robust standard errors in parentheses assuming that the error 

terms are correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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Table 15: Estimates of Climate-Driven Migration: Weather Measured over the last 10 years
before census

For another robustness check, we relax the growing season restriction and allow the

summary measures of weather to utilize data point from all calendar months.
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Table 16: Estimates of Climate-Driven Migration: No growing season restriction for weather
data

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) 0.0015 -1.2187** -1.8498*** -1.5698***

(0.5757) (0.5533) (0.5151) (0.4803)

Recent mean temperature (°C) 0.0485 -0.0178 -0.0510 0.0483

(0.0598) (0.0596) (0.0529) (0.0828)

Recent mean rainfall square 0.0489 0.6628** 0.9236*** 0.8268***

(0.3176) (0.3136) (0.2835) (0.2697)

Recent mean temperature square -0.0012 0.0005 0.0009 -0.0012

(0.0015) (0.0015) (0.0014) (0.0020)

Rainfall, coefficient of variation 0.0868 -0.0014 -0.0504 -0.1077

(0.2181) (0.2396) (0.2535) (0.2320)

Temperature, coefficient of variation 3.2718 5.2153 8.1792 16.9749**

(7.6997) (9.9480) (12.1416) (8.4680)

Control Variables

Average weather of top destinations None Top1 Top3 Top5

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

Age Group 22-32 22-32 22-32 22-32

Gender Female Female Female Female

N 2,108,842 2,108,488 2,108,842 2,108,842

R-squared 0.0920 0.0930 0.0931 0.0929

Notes: Clustering robust standard errors in parentheses assuming that the error terms are 

correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

13 Discussion

Several studies have investigated the relationship between climate change and human

mobility in Africa. Our study contributes to existing literature by addressing a concep-

tual gap, which was failure to account for weather conditions in potential destinations.

Secondly, our measure of migration applies consistently across countries. This allowed

us to include many countries into the analysis, which desirable for enhancing general-

izability of findings.
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Upon observing distinct differences in regression outputs between Eastern and

Western SSA countries, we divided our sample into East and West SSA. The substan-

tial sample size provided by IPUMS census data enabled us to create precise estimates

for each region. Overall, our findings reveal evidence of climate-related migration in

West SSA. Specifically, reduced rainfall and rising temperatures drive people out of

affected areas. Surprisingly, we do not detect climate-induced mobility in East SSA.

Although we do not readily explain the insignificant result for East SSA, our study

rules out the possibility that inconsistencies between East and West arise from varia-

tions in definitions of migrants, measures of migration, study time frame, core explana-

tory variables, assumptions about the linearity of the relationship between those vari-

ables and migration, and model specifications, as suggested by Weinreb et al. (2020).

Instead, our findings point to unique differences between East and West, such as vari-

ations in adaptation measures. A new investigation could provide further insights into

these distinctions.

14 Conclusion

This study set out to examine the existence of climate-driven mobility is sub-Saharan

African countries. Overall, we find overwhelming evidence of climate-induced reloca-

tion in Western SSA countries. The channel is long term changes in both mean rain-

fall and mean temperature. Additionally, we uncover evidence that climate-induced

mobility involves relocation of family units as opposed to individuals migrating inde-

pendently. Meanwhile, we are unable to uncover strong evidence from Eastern SSA

countries, despite utilizing the same methodology and variable measures as for West

SSA. The finding for east SSA necessitates further inquiry. Other researchers (Bertoli

et al. (2022); Thiede et al. (2016); Mueller et al. (2020a)) suggest that climate change

and weather shocks interact with other existing conditions and practices in intricate

ways, which may or may not result in out-migration. Understanding the unique situ-

ation of east SSA may help to explain the masked migratory effect of climate change

Our findings have important implications for policy: There is need to understand
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more clearly the impact of climate-induced migration on the welfare of host and sending

communities, as well as the migrants themselves in west SSA. This will be critical for

crafting effective policies, particularly those that safeguard the well-being of people

in both the sending and receiving communities. Further, climate adaptation policies

should focus on cushioning the vulnerable populations. Depending on impacts on the

receiving and sending communities, policies facilitating migration (as an adaptation

measure) may be instituted.
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B Appendix B

This is my second appendix.

C Appendix C

This is my third appendix.
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Table 17: Robustness Check: Standard Deviation of Weather as Deviation from Historical
Mean, East and West SSA

Dependent Variable

Variables (1) (2) (3) (4)

Recent mean rainfall (dm) -0.0013 -0.4078 -1.4335** -2.2790***

(0.3600) (0.3022) (0.6361) (0.6138)

Recent mean temperature (°C) -0.0517 -0.0733 1.1468 2.0900**

(0.0639) (0.0813) (0.8135) (0.8951)

Recent mean rainfall square -0.0010 0.1236 0.1969* 0.3257***

(0.1190) (0.1012) (0.1013) (0.1003)

Recent mean temperature square 0.0013 0.0014 -0.0161 -0.0352**

(0.0015) (0.0019) (0.0146) (0.0155)

Rainfall, standard deviation from historical mean 0.0761 -0.0870 0.0180 -0.3146

(0.1424) (0.1968) (0.2666) (0.3519)

Temperature, standard deviation from historical mean 0.2067 0.1975 -1.1257*** -1.5245***

(0.1386) (0.2090) (0.3777) (0.4053)

Control Variables

Average weather of top destinations None Top3 None Top3

Location FE ✔ ✔ ✔ ✔

Time FE ✔ ✔ ✔ ✔

Country x Time FE ✔ ✔ ✔ ✔

SSA Region East East West West

Age Group 22-32 22-32 22-32 22-32

Gender Both Both Both Both

N 3,949,270 3,949,270 2,698,961 2,698,961

R-squared 0.0945 0.0949 0.1414 0.1442

Notes: Clustering robust standard errors in parentheses assuming that the error terms are 

correlated within each location. *** p<0.01, ** p<0.05, * p<0.1

Out-migration
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